knitr::opts_chunk$set(
  warning = FALSE, # show warnings during codebook generation
  message = FALSE, # show messages during codebook generation
  error = TRUE, # do not interrupt codebook generation in case of errors,
                # usually better for debugging
  echo = TRUE  # show R code
)
ggplot2::theme_set(ggplot2::theme_bw())
pander::panderOptions("table.split.table", Inf)
knit_by_pkgdown <- !is.null(knitr::opts_chunk$get("fig.retina"))
pander::panderOptions("table.split.table", Inf)
ggplot2::theme_set(ggplot2::theme_bw())
knitr::opts_chunk$set(warning = TRUE, message = TRUE, error = TRUE, echo = TRUE)

intergroup_dating <- rio::import("https://osf.io/btzku/download", "sav")
codebook_data <- intergroup_dating

val_labels(codebook_data$citizen) <- c("Yes" = 1, "No" = 2)
val_labels(codebook_data$education) <- c("1" = 1,
   "2" = 2, "3" = 3,  "4" = 4,  "5" = 5, "6" = 6, "7" = 7)
val_labels(codebook_data$MC1nationalitycorrect) <- c("wrong" = 0, "right" = 1)
val_labels(codebook_data$MC2incomecorrect) <- c("wrong" = 0, "right" = 1)
val_labels(codebook_data$MC3hobbiescorrect) <- c("wrong" = 0, "right" = 1)



codebook_data <- codebook_data %>% mutate_at(vars(BehVig8, BehVig26, BehVig27, BehVig28, BehVig29, BehVig30), reverse_labelled_values)

codebook_data$BehVig <- codebook_data %>% select(BehVig1:BehVig30) %>% aggregate_and_document_scale()

codebook_data$Matevalue <- codebook_data %>% select(matevalue1:matevalue5) %>% aggregate_and_document_scale()

codebook_data$RomInterest <- codebook_data %>% select(RomInterest_1:RomInterest_8) %>% aggregate_and_document_scale()

dict <- rio::import("https://osf.io/uq98j/download", "xlsx")
# 
# var_label(codebook_data) <- dict %>% select(Variable, Label) %>% dict_to_list()

# omit the following lines, if your missing values are already properly labelled
codebook_data <- detect_missing(codebook_data,
    only_labelled = TRUE, # only labelled values are autodetected as
                                   # missing
    negative_values_are_missing = FALSE, # negative values are missing values
    ninety_nine_problems = TRUE,   # 99/999 are missing values, if they
                                   # are more than 5 MAD from the median
    )

# If you are not using formr, the codebook package needs to guess which items
# form a scale. The following line finds item aggregates with names like this:
# scale = scale_1 + scale_2R + scale_3R
# identifying these aggregates allows the codebook function to
# automatically compute reliabilities.
# However, it will not reverse items automatically.
codebook_data <- detect_scales(codebook_data)
metadata(codebook_data)$name <- "An evolutionary perspective on intergroup dating bias"

metadata(codebook_data)$description <- paste0("


### Download link
[Open Science Framework](https://osf.io/btzku/download)

")


metadata(codebook_data)$identifier <- "https://osf.io/6bwmq/"
metadata(codebook_data)$datePublished <- "2018-01-24"
metadata(codebook_data)$contributors <- list(
      "Samantha Brindley "," Melissa Marie McDonald "," Lisa Welling "," Virgil Zeigler-Hill ")
metadata(codebook_data)$citation <- " Samantha Brindley, Melissa M. McDonald, Lisa L. M. Welling & Virgil Zeigler-Hill (2018) An evolutionary perspective on intergroup dating bias, Comprehensive Results in Social Psychology, 3:1, 28-55, DOI: 10.1080/23743603.2018.1436939 "
metadata(codebook_data)$url <- "https://osf.io/btzku/"
metadata(codebook_data)$temporalCoverage <- "2018" 

metadata(codebook_data)$distribution = list(
  list("@type" = "DataDownload",
       "requiresSubscription" = "http://schema.org/True",
       "encodingFormat" = "https://www.loc.gov/preservation/digital/formats/fdd/fdd000469.shtml",
       contentUrl = "https://osf.io/btzku/download")
)
codebook(codebook_data)
knitr::asis_output(data_info)

Metadata

Description

if (exists("name", meta)) {
  glue::glue(
    "__Dataset name__: {name}",
    .envir = meta)
}

Dataset name: An evolutionary perspective on intergroup dating bias

cat(description)

Variables

knitr::asis_output(paste0(scales_items, sep = "\n\n\n", collapse = "\n\n\n"))

startdate

Start time

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

4 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
startdate Start time numeric 4 2002 2006 1.4e+10 5.6e+07 1.4e+10 1.4e+10 1.4e+10 1.4e+10 1.4e+10 ▆▁▁▁▁▁▁▇ F8.12
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

enddate

End time

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

4 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
enddate End time numeric 4 2002 2006 1.4e+10 5.6e+07 1.4e+10 1.4e+10 1.4e+10 1.4e+10 1.4e+10 ▆▁▁▁▁▁▁▇ F8.12
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

ConsentAgree

Consent to participate

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

10 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
ConsentAgree Consent to participate numeric 10 1996 2006 1 0 1 1 1 1 1 ▁▁▁▇▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

keepdrop

Exclusion for all critieria except conception risk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

3 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
keepdrop Exclusion for all critieria except conception risk numeric 0. keep,
1. drop
3 2003 2006 0.59 0.49 0 0 1 1 1 ▆▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • keep: 0
  • drop: 1

conriskkeepdrop

Exclusion for conception risk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

6 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
conriskkeepdrop Exclusion for conception risk numeric 0. keep,
1. drop
6 2000 2006 0.64 0.48 0 0 1 1 1 ▅▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • keep: 0
  • drop: 1

targetincome

Income manipulation

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
targetincome Income manipulation numeric 0. low,
1. high
1053 953 2006 0.5 0.5 0 0 1 1 1 ▇▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • low: 0
  • high: 1

targetformidability

Formidability manipulation

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
targetformidability Formidability manipulation numeric 0. low,
1. high
1053 953 2006 0.5 0.5 0 0 1 1 1 ▇▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • low: 0
  • high: 1

targetgroupstatus

Group status manipulation

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
targetgroupstatus Group status manipulation numeric 0. ingroup,
1. outgroup
1053 953 2006 0.5 0.5 0 0 0 1 1 ▇▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • ingroup: 0
  • outgroup: 1

conceptionrisk

Conception risk values

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1272 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
conceptionrisk Conception risk values numeric 1272 734 2006 0.042 0.079 0 0 0 0.02 0.25 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

vsc

Vulnerability to sexual coercion composite scale

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

980 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
vsc Vulnerability to sexual coercion composite scale numeric 980 1026 2006 4.41 1.06 1.27 3.74 4.44 5.17 7 ▁▂▃▆▇▆▃▁ F8.2 10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

rominterest

Romantic interest composite scale

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1054 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
rominterest Romantic interest composite scale numeric 1054 952 2006 3.37 1.58 1 2 3.5 4.75 7 ▇▆▅▅▆▆▂▁ F8.2 13
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

Scale: matevalue

Overview

Reliability: Cronbach’s α [95% CI] = 0.91 [0.9;0.91].

Missing: 1048.

old_height <- knitr::opts_chunk$get("fig.height")
new_height <- length(scale_info$scale_item_names)
new_height <- ifelse(new_height > 20, 20, new_height)
new_height <- ifelse(new_height < 1, 1, new_height)
new_height <- ifelse(is.na(new_height) | is.nan(new_height), 
                     old_height, new_height)
knitr::opts_chunk$set(fig.height = new_height)
likert_plot <- likert_from_items(items)
if (!is.null(likert_plot)) {
  graphics::plot(likert_plot)
}

knitr::opts_chunk$set(fig.height = old_height)
binwidth <- mean(diff(sort(unique(scale))))

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
dist_plot <- plot_labelled(scale, scale_name, wrap_at)

choices <- attributes(items[[1]])$item$choices
breaks <- as.numeric(names(choices))
if (length(breaks)) {
  suppressMessages( # ignore message about overwriting x axis
  dist_plot <- dist_plot +
        ggplot2::scale_x_continuous("values", 
                                breaks = breaks, 
                                labels = stringr::str_wrap(unlist(choices), ceiling(wrap_at * 0.21))) +
      ggplot2::expand_limits(x = range(breaks)))
  
}

dist_plot

Reliability details

for (i in seq_along(reliabilities)) {
  rel <- reliabilities[[i]]
  cat(knitr::knit_print(rel, indent = paste0(indent, "####")))
}
Reliability
95% Confidence Interval
if (!is.null(x$total$ase)) {
  pander::pander(data.frame(lower = x$total$raw_alpha - 1.96 * x$total$ase, 
             estimate = x$total$raw_alpha, 
             upper = x$total$raw_alpha + 1.96 * 
  x$total$ase))
}
lower estimate upper
0.9002 0.9066 0.9131
pander::pander(x$total)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9066 0.9073 0.8904 0.6619 9.79 0.003306 4.757 1.072 0.6547
Reliability if an item is dropped:
rownames(x$alpha.drop) <- recursive_escape(rownames(x$alpha.drop))
pander::pander(x$alpha.drop)
  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
matevalue1 0.8826 0.8833 0.8524 0.6542 7.567 0.004291 0.001962 0.6532
matevalue2 0.8847 0.8854 0.8545 0.6589 7.725 0.004204 0.001204 0.6516
matevalue3 0.8794 0.8803 0.8509 0.6477 7.353 0.004412 0.002322 0.6402
matevalue4 0.8973 0.898 0.872 0.6876 8.805 0.00375 0.001033 0.6832
matevalue5 0.8856 0.8865 0.8586 0.6613 7.81 0.004193 0.002489 0.6653
Item statistics
rownames(x$item.stats) <- recursive_escape(rownames(x$item.stats))
pander::pander(x$item.stats)
  n raw.r std.r r.cor r.drop mean sd
matevalue1 958 0.8615 0.865 0.8247 0.7828 4.793 1.193
matevalue2 958 0.8596 0.8585 0.8157 0.7711 4.742 1.29
matevalue3 958 0.8722 0.8742 0.8369 0.7971 4.499 1.213
matevalue4 957 0.8194 0.818 0.7462 0.7119 5.178 1.278
matevalue5 958 0.8578 0.855 0.8064 0.7671 4.574 1.305
Non missing response frequency for each item
rownames(x$response.freq) <- recursive_escape(rownames(x$response.freq))
pander::pander(x$response.freq)
  1 2 3 4 5 6 7 miss
matevalue1 0.01148 0.03132 0.08246 0.2255 0.3852 0.2046 0.0595 0.5224
matevalue2 0.02088 0.04175 0.08664 0.2077 0.3779 0.1983 0.06681 0.5224
matevalue3 0.01461 0.06159 0.08351 0.3163 0.3267 0.1691 0.02818 0.5224
matevalue4 0.01149 0.02508 0.04911 0.2006 0.2456 0.3386 0.1296 0.5229
matevalue5 0.0261 0.05532 0.06889 0.3006 0.3205 0.1743 0.05428 0.5224

Summary statistics

for (i in seq_along(names(items))) {
  attributes(items[[i]]) = recursive_escape(attributes(items[[i]]))
}
escaped_table(codebook_table(items))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
matevalue1 Overall, how would you rate your level of desirability as a partner on the following scale?-Your level of desirability as a partner numeric 1048 958 2006 4.79 1.19 1 4 5 6 7 ▁▁▂▅▁▇▅▁ F8.0
matevalue2 Overall, how would members of the opposite sex rate your level of desirability as a partner on th…-Opposite sex rating of your desirability as a partner numeric 1048 958 2006 4.74 1.29 1 4 5 6 7 ▁▁▂▅▁▇▅▂ F8.0
matevalue3 Overall, how would you believe you compare to other people in desirability as a partner on the fo…-Personal desirability comparison to other people numeric 1048 958 2006 4.5 1.21 1 4 5 5 7 ▁▂▂▇▁▇▅▁ F8.0
matevalue4 Overall, how good of a catch are you?-How good of a catch are you? numeric 1049 957 2006 5.18 1.28 1 4 5 6 7 ▁▁▁▅▁▆▇▃ F8.0
matevalue5 Overall, how physically attractive do you believe you are?-Personal physical attractiveness numeric 1048 958 2006 4.57 1.31 1 4 5 5 7 ▁▂▂▇▁▇▅▂ F8.0

Cconceptionrisk

Centered conception risk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1272 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
Cconceptionrisk Centered conception risk numeric 1272 734 2006 -0.001 0.079 -0.043 -0.043 -0.043 -0.023 0.21 ▇▁▁▁▁▁▁▁ F8.2 17
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

Cvsc

Centered vsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

980 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
Cvsc Centered vsc numeric 980 1026 2006 0.0094 1.06 -3.13 -0.66 0.041 0.77 2.6 ▁▂▃▆▇▆▃▁ F8.2 10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

age

Participant age

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

94 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
age Participant age numeric 94 1912 2006 29.95 8.22 18 26 29 33 300 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

gender

Participange gender

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

93 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
gender Participange gender numeric 1. male,
2. female
93 1913 2006 1.97 0.18 1 2 2 2 2 ▁▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • male: 1
  • female: 2

turkprimegender

Gender as indicated by Turkprime

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

947 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
turkprimegender Gender as indicated by Turkprime numeric 1. male,
2. female,
3. unknown
947 1059 2006 1.96 0.34 1 2 2 2 4 ▁▁▇▁▁▁▁▁ F8.0 13
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • male: 1
  • female: 2
  • unknown: 3

sexorien

Do you consider yourself to be heterosexual?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

93 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
sexorien Do you consider yourself to be heterosexual? numeric 1. Yes,
2. No
93 1913 2006 1.03 0.17 1 1 1 1 2 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • Yes: 1
  • No: 2

citizen

Were you born a United States citizen?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

94 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels missing complete n n_unique top_counts format.spss
citizen Were you born a United States citizen? labelled FALSE 1. Yes,
2. No
94 1912 2006 2 1: 1896, NA: 94, 2: 16 F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • Yes: 1
  • No: 2

hormcon

Are you currently using hormonal contraceptives (e.g. birth control pills, patches, rings, shots,…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

93 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
hormcon Are you currently using hormonal contraceptives (e.g. birth control pills, patches, rings, shots,… numeric 1. yes,
2. no
93 1913 2006 1.83 0.37 1 2 2 2 2 ▂▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • yes: 1
  • no: 2

education

What is the highest level of education that you have completed?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

93 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels missing complete n n_unique top_counts format.spss
education What is the highest level of education that you have completed? labelled FALSE 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
93 1913 2006 7 5: 737, 3: 489, 4: 286, 6: 192 F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • 1: 1
  • 2: 2
  • 3: 3
  • 4: 4
  • 5: 5
  • 6: 6
  • 7: 7

single

Would you consider your relationship status as single?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

93 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
single Would you consider your relationship status as single? numeric 1. yes,
2. no
93 1913 2006 1.26 0.44 1 1 1 2 2 ▇▁▁▁▁▁▁▃ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • yes: 1
  • no: 2

annualincome

What is your current annual income? Please enter the amount WITHOUT any letters or symbols ( $ or…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

95 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
annualincome What is your current annual income? Please enter the amount WITHOUT any letters or symbols ( $ or… numeric 95 1911 2006 40465.21 34018.62 0 25000 35800 50000 650000 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

duplicateID

Entered study more than once?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

933 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
duplicateID Entered study more than once? numeric 0. yes,
1. no
933 1073 2006 0.84 0.37 0 1 1 1 1 ▂▁▁▁▁▁▁▇ F8.0 10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • yes: 0
  • no: 1

demoexclusioncriteria

Exclusion just for demographics

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1790 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
demoexclusioncriteria Exclusion just for demographics numeric 0. keep,
1. not within 25-35,
2. not female,
NA. [3] not heterosexual,
4. not only caucasian,
NA. [5] not US citizen,
6. using hormonal contraceptives,
7. not single
1790 216 2006 0.49 1.62 0 0 0 0 7 ▇▁▁▁▁▁▁▁ F40.0 18
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • keep: 0
  • not within 25-35: 1
  • not female: 2
  • [3] not heterosexual: NA
  • not only caucasian: 4
  • [5] not US citizen: NA
  • using hormonal contraceptives: 6
  • not single: 7

carelessresponding

Exclusion for careless responding

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1043 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
carelessresponding Exclusion for careless responding numeric 0. yes,
1. no
1043 963 2006 0.99 0.096 0 1 1 1 1 ▁▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • yes: 0
  • no: 1

AttentionCheck

“Please select”7 Always" if you are paying attention."

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

999 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
AttentionCheck “Please select”7 Always" if you are paying attention." numeric 7. Correct 999 1007 2006 6.98 0.23 2 7 7 7 7 ▁▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • Correct: 7

attentioncheckpf

Exclusion based on attention check

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1042 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
attentioncheckpf Exclusion based on attention check numeric 0. pass,
1. fail
1042 964 2006 0.0093 0.096 0 0 0 0 1 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • pass: 0
  • fail: 1

targetphoto

Which target photo participant viewed

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
targetphoto Which target photo participant viewed numeric 0. 013,
1. 020,
2. 033
1053 953 2006 1 0.82 0 0 1 2 2 ▇▁▁▇▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • 013: 0
  • 020: 1
  • 033: 2

targetnationality

Which target nationality was used

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1054 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
targetnationality Which target nationality was used numeric 0. US,
1. Australia,
2. Ireland,
3. UK
1054 952 2006 1 1.15 0 0 1 2 3 ▇▁▃▁▁▂▁▃ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • US: 0
  • Australia: 1
  • Ireland: 2
  • UK: 3

completedsurvey

Survey completed?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

499 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
completedsurvey Survey completed? numeric 0. yes,
1. no
499 1507 2006 0.37 0.48 0 0 0 1 1 ▇▁▁▁▁▁▁▅ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • yes: 0
  • no: 1

compensated

Paid for participation?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

933 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
compensated Paid for participation? numeric 0. yes,
1. no
933 1073 2006 0.15 0.36 0 0 0 0 1 ▇▁▁▁▁▁▁▂ F8.0 12
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • yes: 0
  • no: 1

race_1

What is your race/ethnicity? (please check all that apply)-Black or African American

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1939 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
race_1 What is your race/ethnicity? (please check all that apply)-Black or African American numeric 1939 67 2006 1 0 1 1 1 1 1 ▁▁▁▇▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

race_2

What is your race/ethnicity? (please check all that apply)-White (Not Hispanic/Not Latino)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

232 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
race_2 What is your race/ethnicity? (please check all that apply)-White (Not Hispanic/Not Latino) numeric 232 1774 2006 1 0 1 1 1 1 1 ▁▁▁▇▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

race_3

What is your race/ethnicity? (please check all that apply)-Hispanic or Latino

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1980 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
race_3 What is your race/ethnicity? (please check all that apply)-Hispanic or Latino numeric 1980 26 2006 1 0 1 1 1 1 1 ▁▁▁▇▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

race_4

What is your race/ethnicity? (please check all that apply)-American Indian

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## No non-missing values to show.
knitr::opts_chunk$set(fig.height = old_height)

2006 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
race_4 What is your race/ethnicity? (please check all that apply)-American Indian numeric 2006 0 2006 NaN NA NA NA NA NA NA F40.0 9
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

race_5

What is your race/ethnicity? (please check all that apply)-Asian

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1983 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
race_5 What is your race/ethnicity? (please check all that apply)-Asian numeric 1983 23 2006 1 0 1 1 1 1 1 ▁▁▁▇▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

race_6

What is your race/ethnicity? (please check all that apply)-Native Hawaiian or Pacific Islander

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## No non-missing values to show.
knitr::opts_chunk$set(fig.height = old_height)

2006 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
race_6 What is your race/ethnicity? (please check all that apply)-Native Hawaiian or Pacific Islander numeric 2006 0 2006 NaN NA NA NA NA NA NA F40.0 9
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

race_7

What is your race/ethnicity? (please check all that apply)-Member of race not listed above

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## No non-missing values to show.
knitr::opts_chunk$set(fig.height = old_height)

2006 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
race_7 What is your race/ethnicity? (please check all that apply)-Member of race not listed above numeric 2006 0 2006 NaN NA NA NA NA NA NA F40.0 9
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

Menstruated

Have you ever menstruated?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1041 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
Menstruated Have you ever menstruated? numeric 1041 965 2006 1.01 0.079 1 1 1 1 2 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

MenstStop

Have you stopped menstruating due to menopause or any reason EXCEPT pregnancy or hormonal birth c…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1041 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
MenstStop Have you stopped menstruating due to menopause or any reason EXCEPT pregnancy or hormonal birth c… numeric 1041 965 2006 1.94 0.24 1 2 2 2 2 ▁▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

HRT

Are you using hormone replacement therapy?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1041 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
HRT Are you using hormone replacement therapy? numeric 1041 965 2006 2 0.064 1 2 2 2 2 ▁▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

HorCon3mon

Have you used any method of hormonal contraception in the past three months? This includes the bi…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1042 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
HorCon3mon Have you used any method of hormonal contraception in the past three months? This includes the bi… numeric 1042 964 2006 1.97 0.18 1 2 2 2 2 ▁▁▁▁▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

ContraceptiveKind

If so, what kind?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## 47  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max format.spss display_width
ContraceptiveKind If so, what kind? character 0 2006 2006 1217 47 0 59 A59 21
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

PregnantDue

If you are pregnant, when are you due? (If you are NOT pregnant, please type in “N/A.”) ï_ MM/DD/…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max format.spss display_width
PregnantDue If you are pregnant, when are you due? (If you are NOT pregnant, please type in “N/A.”) ï_ MM/DD/… character 0 2006 2006 1177 17 0 102 A106 50
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

ChildBirth

If you gave birth to a child in the last year, when was your child born? (If you have NOT given…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max format.spss display_width
ChildBirth If you gave birth to a child in the last year, when was your child born? (If you have NOT given… character 0 2006 2006 1185 18 0 100 A102 50
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

LastPeriod

When did your LAST menstrual period BEGIN? That is, when did your last period of menstrual bleedi…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## 179  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

1047 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n n_unique median min max format.spss
LastPeriod When did your LAST menstrual period BEGIN? That is, when did your last period of menstrual bleedi… Date 1047 959 2006 179 2017-05-13 2007-06-01 2917-08-30 ADATE10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

LastPeriodAcc_1

How accurate would you say this estimate is? Last Menstrual Period Date

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1046 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
LastPeriodAcc_1 How accurate would you say this estimate is? Last Menstrual Period Date numeric 1046 960 2006 7.94 1.54 1 7 9 9 9 ▁▁▁▁▁▂▃▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

PerBefLast

When did the menstrual period BEFORE LAST BEGIN? That is, to your best estimate, when did the per…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## 217  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

1047 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n n_unique median min max format.spss
PerBefLast When did the menstrual period BEFORE LAST BEGIN? That is, to your best estimate, when did the per… Date 1047 959 2006 217 2017-04-15 2002-10-15 2018-03-16 ADATE10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

PerBefLastAcc_1

How accurate would you say this estimate is?-Menstrual Period Before Last

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1044 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
PerBefLastAcc_1 How accurate would you say this estimate is?-Menstrual Period Before Last numeric 1044 962 2006 6.69 2.03 1 5 7 9 9 ▁▂▂▃▅▆▃▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

PerNext

When do you estimate your NEXT menstrual period will begin? That is, when do you expect the first…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## 189  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

1045 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n n_unique median min max format.spss
PerNext When do you estimate your NEXT menstrual period will begin? That is, when do you expect the first… Date 1045 961 2006 189 2017-06-16 2001-01-01 2050-01-01 ADATE10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

PerNextAcc_1

How accurate would you say this estimate is?-Next Menstrual Period

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1042 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
PerNextAcc_1 How accurate would you say this estimate is?-Next Menstrual Period numeric 1042 964 2006 6.14 1.88 1 5 6 7 9 ▂▁▂▅▆▇▅▂ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

CycleLength

What is the AVERAGE LENGTH of your menstrual cycle (total number of days from the first day of me…

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}
## 51  unique, categorical values, so not shown.
knitr::opts_chunk$set(fig.height = old_height)

0 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n empty n_unique min max format.spss display_width
CycleLength What is the AVERAGE LENGTH of your menstrual cycle (total number of days from the first day of me… character 0 2006 2006 1262 51 0 100 A100 23
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

CycleLengthAcc_1

How accurate would you say this estimate is?-Average Cycle Length

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1041 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
CycleLengthAcc_1 How accurate would you say this estimate is?-Average Cycle Length numeric 1041 965 2006 6.68 1.58 1 6 7 8 9 ▁▁▁▃▃▇▆▂ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

conriskexclusion

0=keep, 1=nevermen, 2=menstop, 3=HRT, 4=HorCon3mon, 5=pregnant, 6=childbirth, 7=missingdata, 8=avgcyclelessthan24, 9=avgcyclegreaterthan36, 10=impossible data

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1063 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
conriskexclusion 0=keep, 1=nevermen, 2=menstop, 3=HRT, 4=HorCon3mon, 5=pregnant, 6=childbirth, 7=missingdata, 8=avgcyclelessthan24, 9=avgcyclegreaterthan36, 10=impossible data numeric 0. keep,
1. Never Menstruated,
2. Stopped Menstruating,
3. HRT,
4. Hormonal Contraceptive 3 Month,
5. Child Birth,
6. Pregnant,
7. Missing Data,
8. Avg Cycle Less Than 24 days,
9. Avg Cycle Greater Than 36 days,
10. Impossible Data
1063 943 2006 1.36 2.86 0 0 0 0 10 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • keep: 0
  • Never Menstruated: 1
  • Stopped Menstruating: 2
  • HRT: 3
  • Hormonal Contraceptive 3 Month: 4
  • Child Birth: 5
  • Pregnant: 6
  • Missing Data: 7
  • Avg Cycle Less Than 24 days: 8
  • Avg Cycle Greater Than 36 days: 9
  • Impossible Data: 10

weightedaveragecycle

weighted average cycle length

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1269 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
weightedaveragecycle weighted average cycle length numeric 1269 737 2006 30.62 6.02 4 28.3 29.9 31.1 99 ▁▂▇▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

weightedaveragecyclerounded

rounded weighted average cycle length

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1270 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
weightedaveragecyclerounded rounded weighted average cycle length numeric 1270 736 2006 30.63 5.97 3 28 30 31 99 ▁▁▇▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

daysfromovulation

number of days from ovulation

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1270 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
daysfromovulation number of days from ovulation numeric 1270 736 2006 -1.04 11.17 -49 -8 -2 6 120 ▁▅▇▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

MC1nationality

What was the nationality of the man?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1054 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
MC1nationality What was the nationality of the man? numeric 1. American,
2. European,
NA. [3] Asian,
4. Australian
1054 952 2006 1.74 1.01 1 1 1 2 4 ▇▁▅▁▁▁▁▂ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • American: 1
  • European: 2
  • [3] Asian: NA
  • Australian: 4

MC2income

What was the man’s level of income?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1054 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
MC2income What was the man’s level of income? numeric 1. 20,000-30,000,
2. 50,000-60,000,
3. 90,000-100,000
1054 952 2006 1.94 0.92 1 1 2 3 3 ▇▁▁▃▁▁▁▇ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • 20,000-30,000: 1
  • 50,000-60,000: 2
  • 90,000-100,000: 3

MC3hobbies

What were the man’s hobbies?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1054 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
MC3hobbies What were the man’s hobbies? numeric 1. gardening and volunteering with elderly,
2. hunting and boxing,
3. swimming and cycling
1054 952 2006 1.75 0.73 1 1 2 2 3 ▇▁▁▇▁▁▁▃ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • gardening and volunteering with elderly: 1
  • hunting and boxing: 2
  • swimming and cycling: 3

MC4age

What was the man’s age?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1054 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
MC4age What was the man’s age? numeric 1. 20,
2. 30,
3. 40
1054 952 2006 2.01 0.24 1 2 2 2 3 ▁▁▁▇▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • 20: 1
  • 30: 2
  • 40: 3

MC5profession

In what professional area did the man work?

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1055 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
MC5profession In what professional area did the man work? numeric 1. Business,
2. Law,
3. Teaching
1055 951 2006 1.07 0.33 1 1 1 1 3 ▇▁▁▁▁▁▁▁ F8.0
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • Business: 1
  • Law: 2
  • Teaching: 3

MC1nationalitycorrect

0=wrong, 1=correct

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1056 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels missing complete n n_unique top_counts format.spss display_width
MC1nationalitycorrect 0=wrong, 1=correct labelled FALSE 0. wrong,
1. right
1056 950 2006 2 NA: 1056, 1: 863, 0: 87 F8.2 23
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • wrong: 0
  • right: 1

MC2incomecorrect

0=wrong, 1=correct

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1055 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels missing complete n n_unique top_counts format.spss display_width
MC2incomecorrect 0=wrong, 1=correct labelled FALSE 0. wrong,
1. right
1055 951 2006 2 NA: 1055, 1: 769, 0: 182 F8.2 18
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • wrong: 0
  • right: 1

MC3hobbiescorrect

0=wrong, 1=correct

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1055 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type ordered value_labels missing complete n n_unique top_counts format.spss display_width
MC3hobbiescorrect 0=wrong, 1=correct labelled FALSE 0. wrong,
1. right
1055 951 2006 2 NA: 1055, 1: 755, 0: 196 F8.2 19
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • wrong: 0
  • right: 1

groupXincome

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincome numeric 1053 953 2006 0.25 0.43 0 0 0 1 1 ▇▁▁▁▁▁▁▃ F8.2 14
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXformid

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXformid numeric 1053 953 2006 0.25 0.43 0 0 0 0 1 ▇▁▁▁▁▁▁▂ F8.2 14
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXcrisk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1168 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXcrisk numeric 1168 838 2006 -0.0043 0.047 -0.043 -0.043 0 0 0.21 ▅▇▁▁▁▁▁▁ F8.2 13
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXvsc numeric 1053 953 2006 -0.019 0.75 -3.13 0 0 0 2.6 ▁▁▁▁▇▂▁▁ F8.2 11
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

incomeXformid

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
incomeXformid numeric 1053 953 2006 0.25 0.43 0 0 0 1 1 ▇▁▁▁▁▁▁▃ F8.2 15
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

incomeXcrisk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1168 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
incomeXcrisk numeric 1168 838 2006 0.00025 0.052 -0.043 -0.043 0 0 0.21 ▅▇▁▁▁▁▁▁ F8.2 14
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

incomeXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
incomeXvsc numeric 1053 953 2006 -0.014 0.73 -2.7 -0.00062 0 0 2.5 ▁▁▁▂▇▁▁▁ F8.2 12
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

formidXcrisk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1156 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
formidXcrisk numeric 1156 850 2006 -0.0023 0.05 -0.043 -0.043 0 0 0.21 ▅▇▁▁▁▁▁▁ F8.2 14
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

formidXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
formidXvsc numeric 1053 953 2006 0.0072 0.76 -2.7 0 0 0.066 2.6 ▁▁▁▂▇▁▁▁ F8.2 12
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

criskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1272 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
criskXvsc numeric 1272 734 2006 0.0016 0.089 -0.55 -0.031 2e-05 0.031 0.52 ▁▁▁▅▇▁▁▁ F8.2 11
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXincomeXformid

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincomeXformid numeric 1053 953 2006 0.12 0.33 0 0 0 0 1 ▇▁▁▁▁▁▁▁ F8.2 21
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXincomeXcrisk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1111 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincomeXcrisk numeric 1111 895 2006 -0.00059 0.034 -0.043 0 0 0 0.21 ▂▇▁▁▁▁▁▁ F8.2 20
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXincomeXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincomeXvsc numeric 1053 953 2006 -0.029 0.5 -2.67 0 0 0 2.5 ▁▁▁▁▇▁▁▁ F8.2 18
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXformidXcrisk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1106 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXformidXcrisk numeric 1106 900 2006 -0.0029 0.031 -0.043 0 0 0 0.21 ▂▇▁▁▁▁▁▁ F8.2 20
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXformidXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXformidXvsc numeric 1053 953 2006 -0.012 0.57 -2.67 0 0 0 2.6 ▁▁▁▁▇▁▁▁ F8.2 18
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXcriskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1168 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXcriskXvsc numeric 1168 838 2006 0.00048 0.051 -0.38 0 0 0 0.52 ▁▁▁▇▁▁▁▁ F8.2 17
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

incomeXformidXcrisk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1103 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
incomeXformidXcrisk numeric 1103 903 2006 -5e-04 0.036 -0.043 0 0 0 0.21 ▂▇▁▁▁▁▁▁ F8.2 21
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

incomeXformidXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
incomeXformidXvsc numeric 1053 953 2006 -0.013 0.55 -2.7 0 0 0 2.5 ▁▁▁▁▇▁▁▁ F8.2 19
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

incomeXcriskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1168 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
incomeXcriskXvsc numeric 1168 838 2006 -0.00056 0.059 -0.44 0 0 0 0.52 ▁▁▁▇▁▁▁▁ F8.2 18
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

formidXcriskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1156 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
formidXcriskXvsc numeric 1156 850 2006 0.0011 0.053 -0.44 0 0 0 0.52 ▁▁▁▇▁▁▁▁ F8.2 18
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXincomeXformidXcrisk

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1077 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincomeXformidXcrisk numeric 1077 929 2006 -0.0011 0.023 -0.043 0 0 0 0.21 ▁▇▁▁▁▁▁▁ F8.2 27
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXincomeXcriskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1111 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincomeXcriskXvsc numeric 1111 895 2006 -0.00022 0.037 -0.38 0 0 0 0.52 ▁▁▁▇▁▁▁▁ F8.2 24
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXformidXcriskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1106 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXformidXcriskXvsc numeric 1106 900 2006 0.00027 0.035 -0.38 0 0 0 0.52 ▁▁▁▇▁▁▁▁ F8.2 24
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

incomeXformidXcriskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1103 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
incomeXformidXcriskXvsc numeric 1103 903 2006 0.00038 0.042 -0.44 0 0 0 0.52 ▁▁▁▇▁▁▁▁ F8.2 25
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXincomeXformidXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1053 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincomeXformidXvsc numeric 1053 953 2006 -0.018 0.38 -2.67 0 0 0 2.5 ▁▁▁▁▇▁▁▁ F8.2 25
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

groupXincomeXformidXcriskXvsc

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

1077 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
groupXincomeXformidXcriskXvsc numeric 1077 929 2006 0.00025 0.028 -0.38 0 0 0 0.52 ▁▁▁▇▁▁▁▁ F8.2 31
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}
if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}

filter_$

keepdrop = 0 and conriskkeepdrop = 0 and MC1nationalitycorrect = 1 and MC2incomecorrect = 1 and MC3hobbiescorrect = 1 (FILTER)

Distribution

show_missing_values <- FALSE
if (has_labels(item)) {
  missing_values <- item[is.na(haven::zap_missing(item))]
  attributes(missing_values) <- attributes(item)
  if (!is.null(attributes(item)$labels)) {
    attributes(missing_values)$labels <- attributes(missing_values)$labels[is.na(attributes(missing_values)$labels)]
    attributes(item)$labels <- attributes(item)$labels[!is.na(attributes(item)$labels)]
  }
  if (is.double(item)) {
    show_missing_values <- length(unique(haven::na_tag(missing_values))) > 1
    item <- haven::zap_missing(item)
  }
  if (length(item_attributes$labels) == 0 && is.numeric(item)) {
    item <- haven::zap_labels(item)
  }
}
item_nomiss <- item[!is.na(item)]

# unnest mc_multiple and so on
if (
  is.character(item_nomiss) &&
  stringr::str_detect(item_nomiss, stringr::fixed(", ")) &&
  (exists("type", item_info) && 
    stringr::str_detect(item_info$type, pattern = stringr::fixed("multiple")))
  ) {
  item_nomiss <- unlist(stringr::str_split(item_nomiss, pattern = stringr::fixed(", ")))
}
attributes(item_nomiss) <- attributes(item)

old_height <- knitr::opts_chunk$get("fig.height")
non_missing_choices <- item_attributes[["labels"]]
many_labels <- length(non_missing_choices) > 7
go_vertical <- !is.numeric(item_nomiss) || many_labels
if ( go_vertical ) {
  # numeric items are plotted horizontally (because that's what usually expected)
  # categorical items are plotted vertically because we can use the screen real estate better this way

    if (is.null(choices) || 
        dplyr::n_distinct(item_nomiss) > length(non_missing_choices)) {
        non_missing_choices <- unique(item_nomiss)
        names(non_missing_choices) <- non_missing_choices
    }
  choice_multiplier <- old_height/6.5
    new_height <- 2 + choice_multiplier * length(non_missing_choices)
    new_height <- ifelse(new_height > 20, 20, new_height)
    new_height <- ifelse(new_height < 1, 1, new_height)
    knitr::opts_chunk$set(fig.height = new_height)
}

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
# todo: if there are free-text choices mingled in with the pre-defined ones, don't show
# todo: show rare items if they are pre-defined
# todo: bin rare responses into "other category"
if (!length(item_nomiss)) {
  cat("No non-missing values to show.")
} else if (is.numeric(item_nomiss) || dplyr::n_distinct(item_nomiss) < 20) {
  plot_labelled(item_nomiss, item_name, wrap_at, go_vertical)
} else {
    cat(dplyr::n_distinct(item_nomiss), " unique, categorical values, so not shown.")
}

knitr::opts_chunk$set(fig.height = old_height)

5 missing values.

Summary statistics

attributes(item) <- item_attributes
df = data.frame(item, stringsAsFactors = FALSE)
names(df) = html_item_name
escaped_table(codebook_table(df))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
filter_$ keepdrop = 0 and conriskkeepdrop = 0 and MC1nationalitycorrect = 1 and MC2incomecorrect = 1 and MC3hobbiescorrect = 1 (FILTER) numeric 0. Not Selected,
1. Selected
5 2001 2006 0.21 0.41 0 0 0 0 1 ▇▁▁▁▁▁▁▂ F1.0 10
if (show_missing_values) {
  plot_labelled(missing_values, item_name, wrap_at)
}
if (!is.null(item_info)) {
  # don't show choices again, if they're basically same thing as value labels
  if (!is.null(choices) && !is.null(item_info$choices) && 
    all(names(na.omit(choices)) == item_info$choices) &&
    all(na.omit(choices) == names(item_info$choices))) {
    item_info$choices <- NULL
  }
  item_info$label_parsed <- 
    item_info$choice_list <- item_info$study_id <- item_info$id <- NULL
  pander::pander(item_info)
}

Value labels

if (!is.null(choices) && length(choices) && length(choices) < 30) {
    pander::pander(as.list(choices))
}
  • Not Selected: 0
  • Selected: 1

Scale: BehVig

Overview

Reliability: Cronbach’s α [95% CI] = 0.95 [0.95;0.96].

Missing: 1022.

old_height <- knitr::opts_chunk$get("fig.height")
new_height <- length(scale_info$scale_item_names)
new_height <- ifelse(new_height > 20, 20, new_height)
new_height <- ifelse(new_height < 1, 1, new_height)
new_height <- ifelse(is.na(new_height) | is.nan(new_height), 
                     old_height, new_height)
knitr::opts_chunk$set(fig.height = new_height)
likert_plot <- likert_from_items(items)
if (!is.null(likert_plot)) {
  graphics::plot(likert_plot)
}

knitr::opts_chunk$set(fig.height = old_height)
binwidth <- mean(diff(sort(unique(scale))))

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
dist_plot <- plot_labelled(scale, scale_name, wrap_at)

choices <- attributes(items[[1]])$item$choices
breaks <- as.numeric(names(choices))
if (length(breaks)) {
  suppressMessages( # ignore message about overwriting x axis
  dist_plot <- dist_plot +
        ggplot2::scale_x_continuous("values", 
                                breaks = breaks, 
                                labels = stringr::str_wrap(unlist(choices), ceiling(wrap_at * 0.21))) +
      ggplot2::expand_limits(x = range(breaks)))
  
}

dist_plot

Reliability details

for (i in seq_along(reliabilities)) {
  rel <- reliabilities[[i]]
  cat(knitr::knit_print(rel, indent = paste0(indent, "####")))
}
Reliability
95% Confidence Interval
if (!is.null(x$total$ase)) {
  pander::pander(data.frame(lower = x$total$raw_alpha - 1.96 * x$total$ase, 
             estimate = x$total$raw_alpha, 
             upper = x$total$raw_alpha + 1.96 * 
  x$total$ase))
}
lower estimate upper
0.9514 0.9542 0.9571
pander::pander(x$total)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9542 0.9542 0.979 0.3667 20.85 0.001458 4.308 1.038 0.3598
Reliability if an item is dropped:
rownames(x$alpha.drop) <- recursive_escape(rownames(x$alpha.drop))
pander::pander(x$alpha.drop)
  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
BehVig1 0.9544 0.9543 0.9794 0.3739 20.9 0.001455 0.0202 0.3661
BehVig2 0.9548 0.9549 0.9798 0.3772 21.19 0.001448 0.01925 0.3671
BehVig3 0.9528 0.9528 0.9784 0.3656 20.17 0.001504 0.02081 0.3596
BehVig4 0.9527 0.9527 0.9784 0.3654 20.15 0.001506 0.02098 0.3596
BehVig5 0.9526 0.9526 0.9782 0.3646 20.09 0.001512 0.02089 0.3596
BehVig6 0.9536 0.9536 0.9786 0.3701 20.57 0.001477 0.02049 0.3631
BehVig7 0.953 0.953 0.9785 0.3667 20.26 0.001499 0.02101 0.3613
BehVig8 0.9532 0.9532 0.9769 0.3677 20.36 0.001488 0.01977 0.3613
BehVig9 0.9541 0.9541 0.9792 0.3727 20.79 0.001463 0.02022 0.3645
BehVig10 0.9533 0.9533 0.979 0.3684 20.41 0.001488 0.02117 0.3629
BehVig11 0.9529 0.9529 0.9782 0.3662 20.22 0.001503 0.0206 0.36
BehVig12 0.9525 0.9525 0.9783 0.3644 20.06 0.001516 0.02067 0.3592
BehVig13 0.9521 0.9522 0.9781 0.3625 19.9 0.001527 0.02054 0.3553
BehVig14 0.9526 0.9526 0.978 0.3649 20.11 0.001511 0.02049 0.36
BehVig15 0.9521 0.9522 0.978 0.3627 19.92 0.001528 0.02078 0.3546
BehVig16 0.9533 0.9534 0.9789 0.3687 20.44 0.001488 0.02069 0.3629
BehVig17 0.9529 0.9529 0.9784 0.3664 20.24 0.001501 0.02055 0.3596
BehVig18 0.9532 0.9531 0.979 0.3676 20.34 0.001492 0.02118 0.3613
BehVig19 0.9532 0.9533 0.9787 0.3682 20.39 0.001491 0.02079 0.3629
BehVig20 0.9531 0.9531 0.9788 0.3672 20.31 0.001496 0.02082 0.3596
BehVig21 0.9529 0.9529 0.9785 0.3663 20.23 0.001502 0.02086 0.3596
BehVig22 0.9525 0.9526 0.9782 0.3647 20.1 0.001514 0.02058 0.3596
BehVig23 0.952 0.9522 0.9779 0.3625 19.9 0.001533 0.02065 0.3552
BehVig24 0.9523 0.9524 0.9784 0.3638 20.01 0.001523 0.02089 0.3559
BehVig25 0.9521 0.9521 0.9781 0.362 19.86 0.001527 0.02042 0.357
BehVig26 0.9526 0.9525 0.9768 0.3645 20.07 0.001507 0.01993 0.3592
BehVig27 0.9526 0.9525 0.9768 0.3644 20.06 0.001509 0.01996 0.3596
BehVig28 0.9531 0.9531 0.9767 0.3674 20.32 0.001492 0.02035 0.3631
BehVig29 0.9537 0.9538 0.9769 0.3708 20.63 0.001475 0.01953 0.3637
BehVig30 0.9528 0.9527 0.9768 0.3653 20.15 0.001502 0.02007 0.3596
BehVig8r 0.9532 0.9532 0.9769 0.3677 20.36 0.001488 0.01977 0.3613
BehVig26r 0.9526 0.9525 0.9768 0.3645 20.07 0.001507 0.01993 0.3592
BehVig27r 0.9526 0.9525 0.9768 0.3644 20.06 0.001509 0.01996 0.3596
BehVig28r 0.9531 0.9531 0.9767 0.3674 20.32 0.001492 0.02035 0.3631
BehVig29r 0.9537 0.9538 0.9769 0.3708 20.63 0.001475 0.01953 0.3637
BehVig30r 0.9528 0.9527 0.9768 0.3653 20.15 0.001502 0.02007 0.3596
Item statistics
rownames(x$item.stats) <- recursive_escape(rownames(x$item.stats))
pander::pander(x$item.stats)
  n raw.r std.r r.cor r.drop mean sd
BehVig1 1026 0.4325 0.4291 0.4039 0.3918 5.769 1.708
BehVig2 1026 0.3489 0.3426 0.3121 0.3034 6.044 1.511
BehVig3 1026 0.6531 0.6507 0.6399 0.6238 5.659 1.6
BehVig4 1026 0.6566 0.6563 0.6444 0.6282 5.443 1.705
BehVig5 1026 0.6766 0.676 0.6669 0.6508 5.064 1.768
BehVig6 1018 0.5415 0.5298 0.5158 0.504 3.271 1.78
BehVig7 1018 0.6335 0.6217 0.6087 0.5987 4.234 1.839
BehVig8 1018 0.5844 0.5934 0.5997 0.5567 4.572 1.654
BehVig9 1018 0.4759 0.4622 0.4412 0.4333 3.626 1.746
BehVig10 1018 0.5825 0.577 0.5578 0.5508 3.328 1.794
BehVig11 1007 0.6368 0.6347 0.6269 0.6117 3.916 1.6
BehVig12 1007 0.6838 0.6829 0.6738 0.6623 4.017 1.768
BehVig13 1007 0.7394 0.733 0.7253 0.7152 5.083 1.662
BehVig14 1007 0.6728 0.6679 0.6627 0.6462 3.925 1.718
BehVig15 1007 0.7318 0.7268 0.7197 0.7098 4.21 1.782
BehVig16 1000 0.5648 0.5689 0.5514 0.5396 5.77 1.369
BehVig17 1000 0.6317 0.6298 0.621 0.606 3.042 1.636
BehVig18 1000 0.5993 0.5972 0.5775 0.5688 4.73 1.918
BehVig19 1000 0.5839 0.582 0.5668 0.5548 5.319 1.567
BehVig20 1000 0.6074 0.6087 0.5923 0.5812 5.636 1.499
BehVig21 987 0.6372 0.6325 0.6194 0.6098 4.823 1.602
BehVig22 987 0.6821 0.6735 0.6647 0.6523 3.399 1.904
BehVig23 987 0.7432 0.734 0.7281 0.718 4.197 1.902
BehVig24 987 0.708 0.6986 0.6878 0.6792 3.448 1.963
BehVig25 987 0.7468 0.7452 0.7381 0.7258 5.347 1.595
BehVig26 985 0.6719 0.6805 0.6878 0.6484 3.729 1.501
BehVig27 985 0.6758 0.6831 0.6903 0.6505 4.806 1.617
BehVig28 985 0.5984 0.6035 0.6099 0.5689 3.501 1.607
BehVig29 985 0.4989 0.5109 0.5164 0.4702 2.488 1.356
BehVig30 984 0.6469 0.6572 0.6642 0.621 3.444 1.573
BehVig8r 1018 0.5844 0.5934 0.5997 0.5567 4.572 1.654
BehVig26r 985 0.6719 0.6805 0.6878 0.6484 3.729 1.501
BehVig27r 985 0.6758 0.6831 0.6903 0.6505 4.806 1.617
BehVig28r 985 0.5984 0.6035 0.6099 0.5689 3.501 1.607
BehVig29r 985 0.4989 0.5109 0.5164 0.4702 2.488 1.356
BehVig30r 984 0.6469 0.6572 0.6642 0.621 3.444 1.573
Non missing response frequency for each item
rownames(x$response.freq) <- recursive_escape(rownames(x$response.freq))
pander::pander(x$response.freq)
  1 2 3 4 5 6 7 miss
BehVig1 0.03411 0.04971 0.05166 0.05361 0.1199 0.1706 0.5205 0.4885
BehVig2 0.02242 0.02924 0.03509 0.06335 0.09064 0.1637 0.5955 0.4885
BehVig3 0.02827 0.04094 0.03996 0.08967 0.1647 0.2086 0.4279 0.4885
BehVig4 0.03996 0.04386 0.06238 0.1053 0.1579 0.2164 0.3743 0.4885
BehVig5 0.04386 0.07018 0.08382 0.1452 0.1686 0.2135 0.2749 0.4885
BehVig6 0.2102 0.1955 0.1601 0.1454 0.166 0.08153 0.04126 0.4925
BehVig7 0.11 0.1041 0.1238 0.1631 0.2092 0.1827 0.1071 0.4925
BehVig8 0.03143 0.08939 0.1552 0.2053 0.1886 0.1788 0.1513 0.4925
BehVig9 0.1493 0.1591 0.1473 0.2063 0.1945 0.08546 0.05796 0.4925
BehVig10 0.1827 0.2014 0.1906 0.167 0.1149 0.07564 0.06778 0.4925
BehVig11 0.06852 0.1539 0.1758 0.2145 0.2284 0.1003 0.05859 0.498
BehVig12 0.07646 0.1807 0.138 0.1797 0.1976 0.1341 0.09335 0.498
BehVig13 0.03376 0.06951 0.07349 0.1291 0.2284 0.2284 0.2373 0.498
BehVig14 0.07349 0.1758 0.1738 0.1936 0.1817 0.1162 0.0854 0.498
BehVig15 0.08342 0.1311 0.1271 0.1877 0.1966 0.1698 0.1043 0.498
BehVig16 0.011 0.025 0.034 0.091 0.185 0.26 0.394 0.5015
BehVig17 0.186 0.285 0.153 0.17 0.123 0.049 0.034 0.5015
BehVig18 0.083 0.088 0.097 0.128 0.188 0.184 0.232 0.5015
BehVig19 0.03 0.029 0.074 0.137 0.204 0.241 0.285 0.5015
BehVig20 0.021 0.035 0.04 0.095 0.181 0.256 0.372 0.5015
BehVig21 0.04053 0.06687 0.08409 0.1692 0.2756 0.2047 0.1591 0.508
BehVig22 0.2036 0.2057 0.1317 0.1499 0.1408 0.0922 0.07599 0.508
BehVig23 0.1185 0.1125 0.1246 0.1631 0.1945 0.153 0.1337 0.508
BehVig24 0.2178 0.1874 0.1317 0.1277 0.1429 0.1125 0.08004 0.508
BehVig25 0.02026 0.04661 0.08207 0.1155 0.2016 0.2209 0.3131 0.508
BehVig26 0.05482 0.1503 0.2832 0.2223 0.1482 0.09442 0.0467 0.509
BehVig27 0.01726 0.07513 0.1421 0.1858 0.1959 0.197 0.1868 0.509
BehVig28 0.09645 0.2122 0.2203 0.2091 0.1452 0.06091 0.05584 0.509
BehVig29 0.2619 0.331 0.1959 0.1239 0.05482 0.0203 0.01218 0.509
BehVig30 0.09654 0.2022 0.2642 0.2022 0.1169 0.06809 0.0498 0.5095
BehVig8r 0.03143 0.08939 0.1552 0.2053 0.1886 0.1788 0.1513 0.4925
BehVig26r 0.05482 0.1503 0.2832 0.2223 0.1482 0.09442 0.0467 0.509
BehVig27r 0.01726 0.07513 0.1421 0.1858 0.1959 0.197 0.1868 0.509
BehVig28r 0.09645 0.2122 0.2203 0.2091 0.1452 0.06091 0.05584 0.509
BehVig29r 0.2619 0.331 0.1959 0.1239 0.05482 0.0203 0.01218 0.509
BehVig30r 0.09654 0.2022 0.2642 0.2022 0.1169 0.06809 0.0498 0.5095

Summary statistics

for (i in seq_along(names(items))) {
  attributes(items[[i]]) = recursive_escape(attributes(items[[i]]))
}
escaped_table(codebook_table(items))
name label data_type value_labels missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss display_width
BehVig1 Before I go to bed at night I double check to make sure the doors are securely locked. numeric 1. Never,
7. Always
980 1026 2006 5.77 1.71 1 5 7 7 7 ▁▁▁▁▁▂▂▇ F8.0 NA
BehVig2 When someone rings/knocks at my door I ask who it is (or look through the peephole) before I open the door. numeric 1. Never,
7. Always
980 1026 2006 6.04 1.51 1 6 7 7 7 ▁▁▁▁▁▁▂▇ F8.0 NA
BehVig3 I think twice before going out for a walk late at night. numeric 1. Never,
7. Always
980 1026 2006 5.66 1.6 1 5 6 7 7 ▁▁▁▂▁▃▃▇ F8.0 NA
BehVig4 If I have to take the subway/bus alone at night I feel anxious numeric 1. Never,
7. Always
980 1026 2006 5.44 1.71 1 4 6 7 7 ▁▁▁▂▁▃▅▇ F8.0 NA
BehVig5 I avoid going out alone at night numeric 1. Never,
7. Always
980 1026 2006 5.06 1.77 1 4 5 7 7 ▁▂▂▅▁▅▆▇ F8.0 NA
BehVig6 I think about the shoes/clothes I am wearing in terms of my ability to run in a dangerous situation. numeric 1. Never,
7. Always
988 1018 2006 3.27 1.78 1 2 3 5 7 ▇▇▆▆▁▆▃▂ F8.0 NA
BehVig7 When I am walking alone I think about where I would run if someone came after me. numeric 1. Never,
7. Always
988 1018 2006 4.23 1.84 1 3 4 6 7 ▅▃▅▆▁▇▇▅ F8.0 NA
BehVig8 I feel confident walking alone late at night. numeric 7. Never,
1. Always
988 1018 2006 4.57 1.65 1 3 5 6 7 ▁▃▆▇▁▇▇▆ F8.0 NA
BehVig9 I am especially careful of wearing the “proper” clothes. numeric 1. Never,
7. Always
988 1018 2006 3.63 1.75 1 2 4 5 7 ▆▆▆▇▁▇▃▂ F8.0 NA
BehVig10 If I was waiting for an elevator and it arrived with one man alone inside, I would wait for the next one. numeric 1. Never,
7. Always
988 1018 2006 3.33 1.79 1 2 3 5 7 ▇▇▇▆▁▅▃▃ F8.0 NA
BehVig11 I am wary of men. numeric 1. Never,
7. Always
999 1007 2006 3.92 1.6 1 3 4 5 7 ▂▆▆▇▁▇▃▂ F8.0 NA
BehVig12 I am afraid of being sexually assaulted. numeric 1. Never,
7. Always
999 1007 2006 4.02 1.77 1 2 4 5 7 ▃▇▆▇▁▇▆▃ F8.0 NA
BehVig13 If I have to walk outside late at night I take precautions. numeric 1. Never,
7. Always
999 1007 2006 5.08 1.66 1 4 5 6 7 ▁▂▂▅▁▇▇▇ F8.0 NA
BehVig14 In general, I am suspicious of men. numeric 1. Never,
7. Always
999 1007 2006 3.92 1.72 1 3 4 5 7 ▃▇▇▇▁▇▅▃ F8.0 NA
BehVig15 If it was dark and I had to walk to my car, I would make sure I was accompanied by someone I trusted. numeric 1. Never,
7. Always
999 1007 2006 4.21 1.78 1 3 4 6 7 ▃▅▅▇▁▇▇▅ F8.0 NA
BehVig16 If I was driving alone and I had to park my car I would try to park on a well-lit street. numeric 1. Never,
7. Always
1006 1000 2006 5.77 1.37 1 5 6 7 7 ▁▁▁▂▁▃▅▇ F8.0 NA
BehVig17 I am afraid to men. numeric 1. Never,
7. Always
1006 1000 2006 3.04 1.64 1 2 3 4 7 ▅▇▅▅▁▃▂▁ F8.0 NA
BehVig18 I carry objects (keys, knife, something sharp) when I walk alone at night. numeric 1. Never,
7. Always
1006 1000 2006 4.73 1.92 1 3 5 6 7 ▃▃▃▅▁▆▆▇ F8.0 NA
BehVig19 When I am choosing a seat on the bus or subway I am conscious of who is sitting nearby. numeric 1. Never,
7. Always
1006 1000 2006 5.32 1.57 1 4 6 7 7 ▁▁▂▃▁▆▇▇ F8.0 NA
BehVig20 If I am going out late at night, I avoid certain parts of town. numeric 1. Never,
7. Always
1006 1000 2006 5.64 1.5 1 5 6 7 7 ▁▁▁▂▁▃▆▇ F8.0 NA
BehVig21 When I get on the bus/streetcar/subway I take a seat that allows me to keep an eye on those sitting nearby. numeric 1. Never,
7. Always
1019 987 2006 4.82 1.6 1 4 5 6 7 ▁▂▂▅▁▇▆▅ F8.0 NA
BehVig22 The possibility of rape affects my freedom of movement. numeric 1. Never,
7. Always
1019 987 2006 3.4 1.9 1 2 3 5 7 ▇▇▅▆▁▆▃▃ F8.0 NA
BehVig23 I ask friends to walk me to my car/the subway if it late at night. numeric 1. Never,
7. Always
1019 987 2006 4.2 1.9 1 3 4 6 7 ▅▅▅▇▁▇▆▆ F8.0 NA
BehVig24 I have turned down invitations/opportunities because I didn’t want to risk coming home alone afterwards. numeric 1. Never,
7. Always
1019 987 2006 3.45 1.96 1 2 3 5 7 ▇▇▅▅▁▅▅▃ F8.0 NA
BehVig25 When I’m walking out alone at night I am very cautious. numeric 1. Never,
7. Always
1019 987 2006 5.35 1.59 1 4 6 7 7 ▁▁▂▃▁▅▆▇ F8.0 NA
BehVig26 In general, how safe do you feel at night? numeric 7. Not at all safe,
1. Very safe
1021 985 2006 3.73 1.5 1 3 4 5 7 ▂▅▇▆▁▅▂▁ F8.0 NA
BehVig27 How safe would you feel walking to your car alone if it was parked in an underground parking lot? numeric 7. Not at all safe,
1. Very safe
1021 985 2006 4.81 1.62 1 4 5 6 7 ▁▃▆▇▁▇▇▇ F8.0 NA
BehVig28 How safe do you feel going into public washrooms in subways or malls? numeric 7. Not at all safe,
1. Very safe
1021 985 2006 3.5 1.61 1 2 3 5 7 ▃▇▇▇▁▅▂▂ F8.0 NA
BehVig29 How safe do you feel in your apartment/house when you are by yourself? numeric 7. Not at all safe,
1. Very safe
1021 985 2006 2.49 1.36 1 1 2 3 7 ▆▇▅▃▁▁▁▁ F8.0 NA
BehVig30 How safe do feel being out alone in your neighborhood at night? numeric 7. Not at all safe,
1. Very safe
1022 984 2006 3.44 1.57 1 2 3 4 7 ▃▆▇▆▁▃▂▂ F8.0 NA
BehVig8r reverse-coded numeric NA 988 1018 2006 4.57 1.65 1 3 5 6 7 ▁▃▆▇▁▇▇▆ F8.2 10
BehVig26r reverse-coded numeric NA 1021 985 2006 3.73 1.5 1 3 4 5 7 ▂▅▇▆▁▅▂▁ F8.2 11
BehVig27r reverse-coded numeric NA 1021 985 2006 4.81 1.62 1 4 5 6 7 ▁▃▆▇▁▇▇▇ F8.2 11
BehVig28r reverse-coded numeric NA 1021 985 2006 3.5 1.61 1 2 3 5 7 ▃▇▇▇▁▅▂▂ F8.2 11
BehVig29r reverse-coded numeric NA 1021 985 2006 2.49 1.36 1 1 2 3 7 ▆▇▅▃▁▁▁▁ F8.2 11
BehVig30r reverse-coded numeric NA 1022 984 2006 3.44 1.57 1 2 3 4 7 ▃▆▇▆▁▃▂▂ F8.2 11

Scale: Matevalue

Overview

Reliability: Cronbach’s α [95% CI] = 0.91 [0.9;0.91].

Missing: 1049.

old_height <- knitr::opts_chunk$get("fig.height")
new_height <- length(scale_info$scale_item_names)
new_height <- ifelse(new_height > 20, 20, new_height)
new_height <- ifelse(new_height < 1, 1, new_height)
new_height <- ifelse(is.na(new_height) | is.nan(new_height), 
                     old_height, new_height)
knitr::opts_chunk$set(fig.height = new_height)
likert_plot <- likert_from_items(items)
if (!is.null(likert_plot)) {
  graphics::plot(likert_plot)
}

knitr::opts_chunk$set(fig.height = old_height)
binwidth <- mean(diff(sort(unique(scale))))

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
dist_plot <- plot_labelled(scale, scale_name, wrap_at)

choices <- attributes(items[[1]])$item$choices
breaks <- as.numeric(names(choices))
if (length(breaks)) {
  suppressMessages( # ignore message about overwriting x axis
  dist_plot <- dist_plot +
        ggplot2::scale_x_continuous("values", 
                                breaks = breaks, 
                                labels = stringr::str_wrap(unlist(choices), ceiling(wrap_at * 0.21))) +
      ggplot2::expand_limits(x = range(breaks)))
  
}

dist_plot

Reliability details

for (i in seq_along(reliabilities)) {
  rel <- reliabilities[[i]]
  cat(knitr::knit_print(rel, indent = paste0(indent, "####")))
}
Reliability
95% Confidence Interval
if (!is.null(x$total$ase)) {
  pander::pander(data.frame(lower = x$total$raw_alpha - 1.96 * x$total$ase, 
             estimate = x$total$raw_alpha, 
             upper = x$total$raw_alpha + 1.96 * 
  x$total$ase))
}
lower estimate upper
0.9002 0.9066 0.9131
pander::pander(x$total)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9066 0.9073 0.8904 0.6619 9.79 0.003306 4.757 1.072 0.6547
Reliability if an item is dropped:
rownames(x$alpha.drop) <- recursive_escape(rownames(x$alpha.drop))
pander::pander(x$alpha.drop)
  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
matevalue1 0.8826 0.8833 0.8524 0.6542 7.567 0.004291 0.001962 0.6532
matevalue2 0.8847 0.8854 0.8545 0.6589 7.725 0.004204 0.001204 0.6516
matevalue3 0.8794 0.8803 0.8509 0.6477 7.353 0.004412 0.002322 0.6402
matevalue4 0.8973 0.898 0.872 0.6876 8.805 0.00375 0.001033 0.6832
matevalue5 0.8856 0.8865 0.8586 0.6613 7.81 0.004193 0.002489 0.6653
Item statistics
rownames(x$item.stats) <- recursive_escape(rownames(x$item.stats))
pander::pander(x$item.stats)
  n raw.r std.r r.cor r.drop mean sd
matevalue1 958 0.8615 0.865 0.8247 0.7828 4.793 1.193
matevalue2 958 0.8596 0.8585 0.8157 0.7711 4.742 1.29
matevalue3 958 0.8722 0.8742 0.8369 0.7971 4.499 1.213
matevalue4 957 0.8194 0.818 0.7462 0.7119 5.178 1.278
matevalue5 958 0.8578 0.855 0.8064 0.7671 4.574 1.305
Non missing response frequency for each item
rownames(x$response.freq) <- recursive_escape(rownames(x$response.freq))
pander::pander(x$response.freq)
  1 2 3 4 5 6 7 miss
matevalue1 0.01148 0.03132 0.08246 0.2255 0.3852 0.2046 0.0595 0.5224
matevalue2 0.02088 0.04175 0.08664 0.2077 0.3779 0.1983 0.06681 0.5224
matevalue3 0.01461 0.06159 0.08351 0.3163 0.3267 0.1691 0.02818 0.5224
matevalue4 0.01149 0.02508 0.04911 0.2006 0.2456 0.3386 0.1296 0.5229
matevalue5 0.0261 0.05532 0.06889 0.3006 0.3205 0.1743 0.05428 0.5224

Summary statistics

for (i in seq_along(names(items))) {
  attributes(items[[i]]) = recursive_escape(attributes(items[[i]]))
}
escaped_table(codebook_table(items))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
matevalue1 Overall, how would you rate your level of desirability as a partner on the following scale?-Your level of desirability as a partner numeric 1048 958 2006 4.79 1.19 1 4 5 6 7 ▁▁▂▅▁▇▅▁ F8.0
matevalue2 Overall, how would members of the opposite sex rate your level of desirability as a partner on th…-Opposite sex rating of your desirability as a partner numeric 1048 958 2006 4.74 1.29 1 4 5 6 7 ▁▁▂▅▁▇▅▂ F8.0
matevalue3 Overall, how would you believe you compare to other people in desirability as a partner on the fo…-Personal desirability comparison to other people numeric 1048 958 2006 4.5 1.21 1 4 5 5 7 ▁▂▂▇▁▇▅▁ F8.0
matevalue4 Overall, how good of a catch are you?-How good of a catch are you? numeric 1049 957 2006 5.18 1.28 1 4 5 6 7 ▁▁▁▅▁▆▇▃ F8.0
matevalue5 Overall, how physically attractive do you believe you are?-Personal physical attractiveness numeric 1048 958 2006 4.57 1.31 1 4 5 5 7 ▁▂▂▇▁▇▅▂ F8.0

Scale: RomInterest

Overview

Reliability: Cronbach’s α [95% CI] = 0.96 [0.96;0.97].

Missing: 1055.

old_height <- knitr::opts_chunk$get("fig.height")
new_height <- length(scale_info$scale_item_names)
new_height <- ifelse(new_height > 20, 20, new_height)
new_height <- ifelse(new_height < 1, 1, new_height)
new_height <- ifelse(is.na(new_height) | is.nan(new_height), 
                     old_height, new_height)
knitr::opts_chunk$set(fig.height = new_height)
likert_plot <- likert_from_items(items)
if (!is.null(likert_plot)) {
  graphics::plot(likert_plot)
}

knitr::opts_chunk$set(fig.height = old_height)
binwidth <- mean(diff(sort(unique(scale))))

wrap_at <- knitr::opts_chunk$get("fig.width") * 10
dist_plot <- plot_labelled(scale, scale_name, wrap_at)

choices <- attributes(items[[1]])$item$choices
breaks <- as.numeric(names(choices))
if (length(breaks)) {
  suppressMessages( # ignore message about overwriting x axis
  dist_plot <- dist_plot +
        ggplot2::scale_x_continuous("values", 
                                breaks = breaks, 
                                labels = stringr::str_wrap(unlist(choices), ceiling(wrap_at * 0.21))) +
      ggplot2::expand_limits(x = range(breaks)))
  
}

dist_plot

Reliability details

for (i in seq_along(reliabilities)) {
  rel <- reliabilities[[i]]
  cat(knitr::knit_print(rel, indent = paste0(indent, "####")))
}
Reliability
95% Confidence Interval
if (!is.null(x$total$ase)) {
  pander::pander(data.frame(lower = x$total$raw_alpha - 1.96 * x$total$ase, 
             estimate = x$total$raw_alpha, 
             upper = x$total$raw_alpha + 1.96 * 
  x$total$ase))
}
lower estimate upper
0.961 0.9635 0.9659
pander::pander(x$total)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9635 0.9639 0.9642 0.7694 26.69 0.001232 3.37 1.578 0.7646
Reliability if an item is dropped:
rownames(x$alpha.drop) <- recursive_escape(rownames(x$alpha.drop))
pander::pander(x$alpha.drop)
  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
RomInterest_1 0.9555 0.9562 0.9547 0.7571 21.81 0.001514 0.002119 0.7564
RomInterest_2 0.9584 0.9588 0.959 0.7689 23.29 0.001418 0.002979 0.7613
RomInterest_3 0.9607 0.9614 0.9616 0.7805 24.9 0.001342 0.002411 0.7812
RomInterest_4 0.9556 0.9562 0.9555 0.757 21.81 0.001517 0.00234 0.7466
RomInterest_5 0.9587 0.9591 0.9578 0.77 23.44 0.001412 0.002375 0.7679
RomInterest_6 0.9593 0.9597 0.9598 0.773 23.84 0.001391 0.002855 0.7679
RomInterest_7 0.9596 0.9599 0.9574 0.7739 23.96 0.001372 0.002426 0.7679
RomInterest_8 0.9597 0.9601 0.957 0.7747 24.06 0.001364 0.0022 0.779
Item statistics
rownames(x$item.stats) <- recursive_escape(rownames(x$item.stats))
pander::pander(x$item.stats)
  n raw.r std.r r.cor r.drop mean sd
RomInterest_1 952 0.9308 0.9297 0.9252 0.9082 3.807 1.739
RomInterest_2 952 0.8926 0.8949 0.8763 0.8599 2.947 1.684
RomInterest_3 951 0.8607 0.8606 0.8309 0.8178 3.335 1.748
RomInterest_4 952 0.93 0.9298 0.9237 0.9058 3.346 1.817
RomInterest_5 952 0.8958 0.8916 0.8765 0.8583 4.141 1.926
RomInterest_6 952 0.8862 0.8828 0.8606 0.8464 3.536 1.89
RomInterest_7 952 0.876 0.8801 0.8631 0.8398 2.97 1.64
RomInterest_8 952 0.8744 0.8779 0.8621 0.8366 2.875 1.682
Non missing response frequency for each item
rownames(x$response.freq) <- recursive_escape(rownames(x$response.freq))
pander::pander(x$response.freq)
  1 2 3 4 5 6 7 miss
RomInterest_1 0.1376 0.125 0.1565 0.1765 0.229 0.1292 0.04622 0.5254
RomInterest_2 0.2668 0.1975 0.1712 0.1586 0.1208 0.06197 0.02311 0.5254
RomInterest_3 0.2072 0.1672 0.1598 0.1619 0.184 0.09253 0.02734 0.5259
RomInterest_4 0.2279 0.167 0.1197 0.1712 0.1775 0.104 0.03256 0.5254
RomInterest_5 0.145 0.09979 0.1176 0.1492 0.1859 0.2006 0.1019 0.5254
RomInterest_6 0.208 0.1502 0.1334 0.1513 0.1775 0.1229 0.05672 0.5254
RomInterest_7 0.2658 0.1838 0.1502 0.1943 0.1418 0.04937 0.01471 0.5254
RomInterest_8 0.2994 0.1901 0.1334 0.1775 0.1334 0.04517 0.02101 0.5254

Summary statistics

for (i in seq_along(names(items))) {
  attributes(items[[i]]) = recursive_escape(attributes(items[[i]]))
}
escaped_table(codebook_table(items))
name label data_type missing complete n mean sd p0 p25 p50 p75 p100 hist format.spss
RomInterest_1 How likely are you to accept a date with this person? numeric 1054 952 2006 3.81 1.74 1 2 4 5 7 ▅▅▆▆▁▇▅▂ F8.0
RomInterest_2 How likely are you to initiate a date with this person? numeric 1054 952 2006 2.95 1.68 1 1 3 4 7 ▇▆▅▅▁▃▂▁ F8.0
RomInterest_3 How likely are you to consider this person for a short-term relationship? numeric 1055 951 2006 3.34 1.75 1 2 3 5 7 ▇▆▆▆▁▇▃▁ F8.0
RomInterest_4 How likely are you to consider this person for a long-term relationship? numeric 1054 952 2006 3.35 1.82 1 2 3 5 7 ▇▆▅▆▁▆▃▁ F8.0
RomInterest_5 How likely are you to meet this person for coffee in the afternoon? numeric 1054 952 2006 4.14 1.93 1 3 4 6 7 ▆▃▅▆▁▇▇▅ F8.0
RomInterest_6 How likely are you to meet this person for drinks at night? numeric 1054 952 2006 3.54 1.89 1 2 4 5 7 ▇▆▅▆▁▇▅▂ F8.0
RomInterest_7 How physically attracted to this person are you? numeric 1054 952 2006 2.97 1.64 1 1 3 4 7 ▇▆▅▆▁▅▂▁ F8.0
RomInterest_8 How romantically attracted to this person are you? numeric 1054 952 2006 2.88 1.68 1 1 3 4 7 ▇▅▃▅▁▃▁▁ F8.0
missingness_report

Missingness report

Among those who finished the survey. Only variables that have missing values are shown.

if (  exists("ended", results) &&
  exists("expired", results)) {
  finisher_results <- dplyr::filter(results, !is.na(.data$ended))
} else {
  finisher_results <- results
  warning("Could not figure out who finished the surveys, because the ",
          "variables expired and ended were missing.")
}
## Warning: Could not figure out who finished the surveys, because the
## variables expired and ended were missing.
if (length(md_pattern)) {
  pander::pander(md_pattern)
}
description keepdrop startdate enddate filter_$ conriskkeepdrop ConsentAgree gender sexorien hormcon education single age citizen annualincome race_2 completedsurvey duplicateID compensated turkprimegender vsc Cvsc BehVig1 BehVig2 BehVig3 BehVig4 BehVig5 BehVig6 BehVig7 BehVig8 BehVig9 BehVig10 BehVig8r AttentionCheck BehVig11 BehVig12 BehVig13 BehVig14 BehVig15 BehVig16 BehVig17 BehVig18 BehVig19 BehVig20 BehVig21 BehVig22 BehVig23 BehVig24 BehVig25 BehVig26 BehVig27 BehVig28 BehVig29 BehVig26r BehVig27r BehVig28r BehVig29r BehVig30 BehVig30r BehVig Menstruated MenstStop HRT CycleLengthAcc_1 attentioncheckpf HorCon3mon PerNextAcc_1 carelessresponding PerBefLastAcc_1 PerNext LastPeriodAcc_1 LastPeriod PerBefLast matevalue matevalue1 matevalue2 matevalue3 matevalue5 matevalue4 Matevalue targetincome targetformidability targetgroupstatus targetphoto groupXincome groupXformid groupXvsc incomeXformid incomeXvsc formidXvsc groupXincomeXformid groupXincomeXvsc groupXformidXvsc incomeXformidXvsc groupXincomeXformidXvsc rominterest targetnationality RomInterest_1 RomInterest_2 RomInterest_4 RomInterest_5 RomInterest_6 RomInterest_7 RomInterest_8 MC1nationality MC2income MC3hobbies MC4age RomInterest_3 MC5profession MC2incomecorrect MC3hobbiescorrect RomInterest MC1nationalitycorrect conriskexclusion groupXincomeXformidXcrisk groupXincomeXformidXcriskXvsc incomeXformidXcrisk incomeXformidXcriskXvsc groupXformidXcrisk groupXformidXcriskXvsc groupXincomeXcrisk groupXincomeXcriskXvsc formidXcrisk formidXcriskXvsc groupXcrisk incomeXcrisk groupXcriskXvsc incomeXcriskXvsc weightedaveragecycle weightedaveragecyclerounded daysfromovulation conceptionrisk Cconceptionrisk criskXvsc demoexclusioncriteria race_1 race_3 race_5 race_4 race_6 race_7 var_miss n_miss
Missing values per variable 3 4 4 5 6 10 93 93 93 93 93 94 94 95 232 499 933 933 947 980 980 980 980 980 980 980 988 988 988 988 988 988 999 999 999 999 999 999 1006 1006 1006 1006 1006 1019 1019 1019 1019 1019 1021 1021 1021 1021 1021 1021 1021 1021 1022 1022 1022 1041 1041 1041 1041 1042 1042 1042 1043 1044 1045 1046 1047 1047 1048 1048 1048 1048 1048 1049 1049 1053 1053 1053 1053 1053 1053 1053 1053 1053 1053 1053 1053 1053 1053 1053 1054 1054 1054 1054 1054 1054 1054 1054 1054 1054 1054 1054 1054 1055 1055 1055 1055 1055 1056 1063 1077 1077 1103 1103 1106 1106 1111 1111 1156 1156 1168 1168 1168 1168 1269 1270 1270 1272 1272 1272 1790 1939 1980 1983 2006 2006 2006 139369 139369
Missing values in 7 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 7 555
Missing values in 126 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126 344
Missing values in 125 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 125 290
Missing values in 6 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 6 165
Missing values in 122 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 122 69
Missing values in 134 variables 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 134 48
Missing values in 126 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126 42
Missing values in 126 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 126 31
Missing values in 135 variables 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135 27
Missing values in 19 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 24
Missing values in 15 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 21
Missing values in 19 variables 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 19 21
102 other, less frequent patterns 101 100 100 99 98 98 95 95 95 95 95 94 94 93 83 82 64 64 56 71 71 71 71 71 71 71 68 68 68 68 68 68 66 66 66 66 66 66 63 63 63 63 63 61 61 61 61 61 59 59 59 59 59 59 59 59 58 58 58 55 55 55 55 52 54 54 51 52 51 50 49 49 49 49 49 49 49 48 48 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 44 44 44 44 44 44 44 44 44 44 44 44 44 43 43 43 43 43 42 44 41 41 35 35 36 36 39 39 25 25 30 28 30 28 16 15 15 13 13 13 15 7 5 7 0 0 0 6956 369
items

Codebook table

export_table(metadata_table)
jsonld