1 Data Preparation

dataset <- read.csv(file = params$file, header = T, sep = ",")
#run parallel cores 
options(mc.cores = 8, brms.backend = "cmdstanr", brms.file_refit = "on_change")
#install.packages("loo")
#remotes::install_github("stan-dev/loo")
library(remotes)
library(loo)
library(psych)
library(relativeVariability)
library(brms)
library(cmdstanr)
library(data.table)
library(ggplot2)
library(dplyr)
library(haven)
#library(rstanarm)
library(knitr)
library(rstan)
library(shinystan)

1.1 Rescale Data

dataset$negemo_full_m <- (dataset$negemo_full_m -1)*(4/6)+1
dataset$posemo_full_m <- (dataset$posemo_full_m -1)*(4/6)+1

dataset$neuro_t <- (dataset$neuro_t -1)*(4/6)+1

hist(dataset$negemo_full_m)

1.2 Censoring Data

range(dataset$negemo_full_m, na.rm = T)
## [1] 1.000000 4.466667
range(dataset$posemo_full_m, na.rm = T)
## [1] 1 5
sd(dataset$negemo_full_m, na.rm = T)
## [1] 0.8067078
mean(dataset$negemo_full_m, na.rm = T)
## [1] 1.783554
sd(dataset$posemo_full_m, na.rm = T)
## [1] 0.8632649
mean(dataset$posemo_full_m, na.rm = T)
## [1] 3.271523
sd(dataset$neuro_t, na.rm = T)
## [1] 0.8339496
mean(dataset$neuro_t, na.rm = T)
## [1] 2.492754
qplot(dataset$negemo_full_, binwidth = .1)
## Warning: Removed 40 rows containing non-finite values (`stat_bin()`).

qplot(dataset$posemo_full_, binwidth = .1)
## Warning: Removed 40 rows containing non-finite values (`stat_bin()`).

dataset$Acens <- case_when(dataset$negemo_full_m == 1 ~ "left",
                         dataset$negemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens)
## 
## left none 
##  117  527
dataset$Acens_p <- case_when(dataset$posemo_full_m == 1 ~ "left",
                         dataset$posemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens_p)
## 
##  left  none right 
##     3   630    11

2 BCLSM Negative Emotion

Kn_model_neuro3 <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .99), init = 0.1,
                       file = paste("models/", params$file, "Kn_model_neuro3"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.69      0.08     0.55     0.87 1.00     4290     7940
## sd(sigma_Intercept)     0.48      0.07     0.36     0.62 1.00     6344    10107
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           0.94      0.34     0.28     1.61 1.00     2510     4677
## sigma_Intercept    -0.76      0.26    -1.29    -0.26 1.00     5963     9308
## neuro_t             0.30      0.13     0.05     0.56 1.00     2793     5372
## sigma_neuro_t       0.06      0.10    -0.13     0.26 1.00     6155     9346
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(Kn_model_neuro3)

pp_check(Kn_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

prior_summary(Kn_model_neuro3)
##                   prior     class      coef     group resp  dpar nlpar lb ub       source
##                  (flat)         b                                                 default
##                  (flat)         b   neuro_t                                  (vectorized)
##                  (flat)         b                          sigma                  default
##                  (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 1.5, 2.5) Intercept                                                 default
##    student_t(3, 0, 2.5) Intercept                          sigma                  default
##    student_t(3, 0, 2.5)        sd                                       0         default
##    student_t(3, 0, 2.5)        sd                          sigma        0         default
##    student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

2.1 Model comparison

2.1.1 scale vs. no scale parameter

Kn_model_neuro2 <- brm(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 6000, warmup = 2000,  chains = 4,
                    control = list(adapt_delta = .98), inits = 0.1 ,
                    file = paste("models/", params$file, "Kn_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
##          total post-warmup draws = 16000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.71      0.08     0.56     0.89 1.00     2523     4584
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.92      0.34     0.24     1.59 1.00     1508     2852
## neuro_t       0.31      0.13     0.05     0.56 1.00     1539     3035
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.63      0.02     0.59     0.67 1.00    13809    11192
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelA <- Kn_model_neuro2
modelB <- Kn_model_neuro3

modelA <- add_criterion(modelA, "loo")
modelB <- add_criterion(modelB, "loo")

loo <- loo_compare(modelA,modelB, criterion = "loo")

loo <- as.data.frame(loo)

loo$Dataset <- params$file
loo <- tibble::rownames_to_column(loo, "model")
library("writexl")
write_xlsx(loo,paste0("loo", params$file, ".xlsx"))

kable(loo)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.00000 0.00000 -506.0189 21.59684 80.13180 6.353057 1012.038 43.19368 Dataset 1 public.csv
modelA -60.61484 12.82878 -566.6337 21.26496 44.15459 3.199572 1133.267 42.52993 Dataset 1 public.csv

2.1.2 censoring vs. no censoring

Kn_model_neuro4 <- brm(bf(negemo_full_m  ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .9999), init = 0,
                       file = paste("models/", params$file, "Kn_model_neuro4"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro4)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.58      0.07     0.46     0.74 1.00     3014     5626
## sd(sigma_Intercept)     0.63      0.08     0.50     0.80 1.00     4188     6770
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.10      0.29     0.55     1.68 1.00     1984     3945
## sigma_Intercept    -1.35      0.31    -1.96    -0.73 1.00     2996     5735
## neuro_t             0.27      0.11     0.05     0.49 1.00     2215     3905
## sigma_neuro_t       0.19      0.12    -0.04     0.43 1.00     3143     5599
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_Cens <- data.frame(matrix(nrow = 2, 
                             ncol = 6+1)) 
names(results_Cens) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma"
                    )

results_Cens$model <- c("modelCensoring", "modelnoCensoring")

#NA

results_Cens[1, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_Cens[1, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

results_Cens[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro4, "b_neuro_t")
results_Cens[2, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "negemo_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_Intercept")

2.1.3 BCLSM vs. model C (two-part model)

dataset <- dataset %>% left_join(dataset %>% distinct(person_id, neuro_t) %>% mutate(neuro_Q =Hmisc::cut2(neuro_t, g = 4)), by = c("person_id", "neuro_t"))


Kn_model_neuro_jinxed <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
  sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kn_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro_jinxed)
## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.00))     0.67      0.17     0.41     1.09 1.00     2578     4678
## sd(Intercept:neuro_Q[2.00,2.67))     0.91      0.24     0.56     1.48 1.00     2062     3646
## sd(Intercept:neuro_Q[2.67,3.33))     0.61      0.15     0.39     0.95 1.00     2342     4564
## sd(Intercept:neuro_Q[3.33,5.00])     0.92      0.30     0.52     1.67 1.00     2395     4860
## sd(sigma_Intercept)                  0.48      0.07     0.36     0.63 1.00     3455     5844
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           0.95      0.36     0.25     1.68 1.00     1443     2758
## sigma_Intercept    -0.77      0.26    -1.28    -0.26 1.00     2882     4960
## neuro_t             0.30      0.14     0.02     0.57 1.00     1620     2990
## sigma_neuro_t       0.06      0.10    -0.13     0.26 1.00     2983     4933
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kn_model_neuro3
modelC <- Kn_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_c <- loo_compare(modelB,modelC, criterion = "loo")

loo_c <- as.data.frame(loo_c)

loo_c$Dataset <- params$file
loo_c <- tibble::rownames_to_column(loo_c, "model")

library("writexl")
write_xlsx(loo_c,paste0("loo_c", params$file, ".xlsx"))

kable(loo_c)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.0000000 0.0000000 -506.0189 21.59684 80.13180 6.353057 1012.038 43.19368 Dataset 1 public.csv
modelC -0.2398655 0.6399589 -506.2587 21.62012 80.42243 6.416719 1012.517 43.24023 Dataset 1 public.csv

2.2 control for gender

dataset$gender <- as.factor(dataset$gender)

Kn_model_sex <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + gender + (1|person_id),
                       sigma ~ neuro_t + gender), data = dataset,
                       iter = 9000, warmup = 2000, chains = 8,
                       control = list(adapt_delta = .99), inits = 0.1,
                    file = paste("models/", params$file, "Kn_model_sex"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_sex)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + gender + (1 | person_id) 
##          sigma ~ neuro_t + gender
##    Data: dataset (Number of observations: 604) 
##   Draws: 8 chains, each with iter = 9000; warmup = 2000; thin = 1;
##          total post-warmup draws = 56000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.71      0.09     0.56     0.90 1.00     9163    15157
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           0.95      0.34     0.27     1.63 1.00     7271    14042
## sigma_Intercept    -0.69      0.11    -0.91    -0.46 1.00    46179    39404
## neuro_t             0.29      0.13     0.02     0.55 1.00     8234    14568
## gender1             0.18      0.28    -0.37     0.73 1.00     8901    15327
## sigma_neuro_t       0.09      0.04     0.00     0.17 1.00    45408    40877
## sigma_gender1      -0.01      0.09    -0.19     0.16 1.00    48671    40265
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kn_model_sex)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kn_model_sex)

3 BCLSM Positive Emotion

Kp_model_neuro3 <- brm(bf(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .95), inits = 0.1,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro3"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.70      0.08     0.57     0.88 1.00     3442     6549
## sd(sigma_Intercept)     0.44      0.06     0.33     0.57 1.00     6538    10951
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.52      0.34     2.85     4.18 1.00     2576     5247
## sigma_Intercept    -0.72      0.23    -1.17    -0.27 1.00     5551     9658
## neuro_t            -0.10      0.13    -0.34     0.16 1.00     2735     5557
## sigma_neuro_t       0.01      0.09    -0.16     0.18 1.00     5709     9464
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kp_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kp_model_neuro3)

prior_summary(Kp_model_neuro3)
##                   prior     class      coef     group resp  dpar nlpar lb ub       source
##                  (flat)         b                                                 default
##                  (flat)         b   neuro_t                                  (vectorized)
##                  (flat)         b                          sigma                  default
##                  (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 3.2, 2.5) Intercept                                                 default
##    student_t(3, 0, 2.5) Intercept                          sigma                  default
##    student_t(3, 0, 2.5)        sd                                       0         default
##    student_t(3, 0, 2.5)        sd                          sigma        0         default
##    student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

3.1 Model comparison

3.1.1 scale vs. no scale parameter

Kp_model_neuro2 <- brm(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 7000, warmup = 2000, chains = 4,
                   control = list(adapt_delta = .95), inits = 0.1,
                    file = paste("models/", params$file, "Kp_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.70      0.08     0.56     0.88 1.00     3306     5257
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     3.51      0.34     2.84     4.17 1.00     2681     5007
## neuro_t      -0.09      0.13    -0.35     0.16 1.00     2776     5338
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.58      0.02     0.54     0.61 1.00    20106    13872
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelAp <- Kp_model_neuro2
modelBp <- Kp_model_neuro3


modelAp <- add_criterion(modelAp, "loo")
modelBp <- add_criterion(modelBp, "loo")

looP <- loo_compare(modelAp,modelBp, criterion = "loo")

looP <- as.data.frame(looP)

looP$Dataset <- params$file
looP <- tibble::rownames_to_column(looP, "model")
library("writexl")
write_xlsx(looP,paste0("looP", params$file, ".xlsx"))

kable(looP)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelBp 0.00000 0.00000 -492.2386 23.23919 84.40907 7.743839 984.4772 46.47837 Dataset 1 public.csv
modelAp -56.66762 13.05663 -548.9062 22.26606 43.86087 3.132181 1097.8124 44.53211 Dataset 1 public.csv

3.1.2 censoring vs. no censoring

Kp_model_neuro4 <- brm(bf(posemo_full_m ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .9999), inits = 0,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro4"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro4)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.69      0.08     0.55     0.87 1.00     2624     5312
## sd(sigma_Intercept)     0.44      0.06     0.33     0.57 1.00     5045     6954
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.49      0.33     2.86     4.14 1.00     2055     4160
## sigma_Intercept    -0.79      0.23    -1.25    -0.33 1.00     4535     7063
## neuro_t            -0.08      0.12    -0.33     0.15 1.00     2301     4392
## sigma_neuro_t       0.03      0.09    -0.15     0.21 1.00     4609     7320
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
#pa

results_Cens[1, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_Cens[1, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")


results_Cens[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro4, "b_neuro_t")
results_Cens[2, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "posemo_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_Intercept")

3.1.3 BCLSM vs. model C (two-part model)

Kp_model_neuro_jinxed <- brm(bf(posemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
     sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kp_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro_jinxed)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.00))     0.84      0.21     0.53     1.33 1.00     2408     4286
## sd(Intercept:neuro_Q[2.00,2.67))     0.61      0.16     0.37     1.01 1.00     3065     5011
## sd(Intercept:neuro_Q[2.67,3.33))     0.65      0.15     0.43     1.00 1.00     3095     5541
## sd(Intercept:neuro_Q[3.33,5.00])     0.64      0.23     0.33     1.20 1.00     3235     5097
## sd(sigma_Intercept)                  0.47      0.07     0.34     0.63 1.00     2960     5549
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.25      0.36     2.53     3.94 1.00     1349     2849
## sigma_Intercept    -0.88      0.26    -1.38    -0.38 1.00     2985     5419
## neuro_t            -0.05      0.13    -0.30     0.22 1.00     1443     2804
## sigma_neuro_t       0.06      0.10    -0.13     0.25 1.00     3013     5222
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kp_model_neuro3
modelC <- Kp_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_cP <- loo_compare(modelB,modelC, criterion = "loo")
## Warning: Not all models have the same y variable. ('yhash' attributes do not match)
loo_cP <- as.data.frame(loo_cP)

loo_cP$Dataset <- params$file
#loo_cP <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_cP,paste0("loo_cP", params$file, ".xlsx"))

kable(loo_cP)
elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelC 0.00000 0.00000 -417.2513 21.41112 78.62783 6.305921 834.5026 42.82223 Dataset 1 public.csv
modelB -74.98728 16.53609 -492.2386 23.23919 84.40907 7.743839 984.4772 46.47837 Dataset 1 public.csv
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_K <- data.frame(matrix(nrow = 7, 
                             ncol = 8+1)) 
names(results_K) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma", "b_neg_sigma_sex",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma", "b_pos_sigma_sex"
                    )

results_K$model <- c("model1", "model2", "model3",
                  "RSD", "RSD_weight", "SD", "gender")

#NA

results_K[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro2, "b_neuro_t")
results_K[2, "negemo_sigma"] <- extract_param(Kn_model_neuro2, "sigma")

results_K[3, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_K[3, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_K[3, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

#gender 

results_K[7, "negemo_b_neuro"] <- extract_param(Kn_model_sex, "b_neuro_t")
results_K[7, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_sex, "b_sigma_neuro_t")
results_K[7, "negemo_sigma"] <- extract_param(Kn_model_sex, "b_sigma_Intercept")
results_K[7, "b_neg_sigma_sex"] <- extract_param(Kn_model_sex, "b_sigma_gender1")

#pa
results_K[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro2, "b_neuro_t")
results_K[2, "posemo_sigma"] <- extract_param(Kp_model_neuro2, "sigma")

results_K[3, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_K[3, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_K[3, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")

4 RVI (Relative Variability Index)

data_w <- unique(dataset[,2:5])

4.1 Unweighted RVI

data_w$RSD_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_NA[i] <- relativeSD(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
    }

range(data_w$RSD_NA, na.rm = T)
## [1] 0.06680537 0.90605554
mean(data_w$RSD_NA, na.rm = T)
## [1] 0.3870748
sd(data_w$RSD_NA, na.rm = T)
## [1] 0.1614962
data_w$logrsd_n <- log(data_w$RSD_NA)

plot(data_w$logrsd_n)

m_rvi_na <- brm(logrsd_n ~ neuro_t, data= data_w,
                file = paste("models/", params$file, "Kn_model_logrsd_uw"))
print(m_rvi_na)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n ~ neuro_t 
##    Data: data_w (Number of observations: 46) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.86      0.22    -1.30    -0.44 1.00     3405     2516
## neuro_t      -0.07      0.08    -0.24     0.09 1.00     3641     2787
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.48      0.05     0.40     0.60 1.00     3844     3150
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,3] <- extract_param(m_rvi_na, "b_neuro_t")



data_w$RSD_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_PA[i] <- relativeSD(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
}

range(data_w$RSD_PA)
## [1] 0.0748950 0.5946569
data_w$logrsd_p <- log(data_w$RSD_PA)


m_rvi_pa <- brm(logrsd_p ~ neuro_t, data= data_w,
                 file = paste("models/", params$file, "Kp_model_logrsd_uw"))
print(m_rvi_pa)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p ~ neuro_t 
##    Data: data_w (Number of observations: 46) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.33      0.22    -1.76    -0.90 1.00     3748     2939
## neuro_t      -0.01      0.08    -0.18     0.16 1.00     3794     3081
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.47      0.05     0.38     0.57 1.00     3233     2737
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,6] <- extract_param(m_rvi_pa, "b_neuro_t")

4.2 Weighted RVI

data_w$mean_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_NA[i] <- mean(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$mean_NA)
## [1] 1.796196
sd(data_w$mean_NA)
## [1] 0.6268781
data_w$mean_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_PA[i] <- mean(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
}

mean(data_w$mean_PA)
## [1] 3.267377
sd(data_w$mean_PA)
## [1] 0.6780735
data_w$weight_NA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_NA[i])) {
      data_w$weight_NA[i] <- maximumSD(data_w$mean_NA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_NA[i] <- data_w$weight_NA[i]^2
    }
  }

mean(data_w$weight_NA)
## [1] 2.137108
sd(data_w$weight_NA)
## [1] 1.35894
range(data_w$weight_NA)
## [1] 0.005079365 4.294242424
m_rvi_na_w <- brm(logrsd_n| weights(weight_NA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logrsd"))
print(m_rvi_na_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n | weights(weight_NA) ~ neuro_t 
##    Data: data_w (Number of observations: 46) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.84      0.16    -1.17    -0.52 1.00     3021     2587
## neuro_t      -0.12      0.06    -0.23     0.00 1.00     3215     2777
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.49      0.04     0.43     0.57 1.00     3475     2673
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,3] <- extract_param(m_rvi_na_w, "b_neuro_t")



data_w$weight_PA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_PA[i])) {
      data_w$weight_PA[i] <- maximumSD(data_w$mean_PA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_PA[i] <- data_w$weight_PA[i]^2
    }
  }

m_rvi_pa_w <- brm(logrsd_p| weights(weight_PA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logrsd"))
print(m_rvi_pa_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p | weights(weight_PA) ~ neuro_t 
##    Data: data_w (Number of observations: 46) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.38      0.11    -1.60    -1.16 1.00     3861     3167
## neuro_t       0.01      0.04    -0.08     0.09 1.00     3936     2948
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.44      0.02     0.40     0.50 1.00     3995     2882
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,6] <- extract_param(m_rvi_pa_w, "b_neuro_t")

5 SD

data_w$sd_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_NA[i] <- sd(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

data_w$sd_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_PA[i] <- sd(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$sd_NA)
## [1] 0.4815722
mean(data_w$sd_PA)
## [1] 0.5199939
data_w$sd_PA[data_w$sd_PA == 0] <- NA   
data_w$sd_NA[data_w$sd_NA == 0] <- NA   


data_w$logsd_NA <- log(data_w$sd_NA)
data_w$logsd_PA <- log(data_w$sd_PA)
m_sd_na <- brm(logsd_NA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logsd"))
m_sd_na
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_NA ~ neuro_t 
##    Data: data_w (Number of observations: 46) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.40      0.32    -2.03    -0.77 1.00     3772     2847
## neuro_t       0.19      0.12    -0.04     0.43 1.00     3653     3086
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.67      0.07     0.54     0.83 1.00     3791     2654
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,3] <- extract_param(m_sd_na, "b_neuro_t")

m_sd_pa <- brm(logsd_PA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logsd"))
m_sd_pa
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_PA ~ neuro_t 
##    Data: data_w (Number of observations: 46) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.84      0.23    -1.29    -0.38 1.00     3801     2583
## neuro_t       0.03      0.09    -0.14     0.21 1.00     3774     2346
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.50      0.05     0.40     0.62 1.00     3632     2800
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,6] <- extract_param(m_sd_pa, "b_neuro_t")
library("writexl")

write_xlsx(results_K,paste0("", params$file, ".xlsx"))

6 Incremental Validity of SD

na_noneurot <- brm(bf(negemo_full_m | cens(Acens) ~  (1|person_id),
                       sigma ~ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,chains = 4,
                      control = list(adapt_delta = .99), init = 0.1,
                   file = "na_noneurot")
## Warning: Rows containing NAs were excluded from the model.
print(na_noneurot)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ (1 | person_id) 
##          sigma ~ (1 | person_id)
##    Data: dataset (Number of observations: 604) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 46) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.73      0.09     0.59     0.92 1.00     2993     5158
## sd(sigma_Intercept)     0.48      0.07     0.36     0.62 1.00     5795    10166
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.69      0.11     1.46     1.90 1.00     1347     2863
## sigma_Intercept    -0.61      0.08    -0.77    -0.46 1.00     3947     7764
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
rans <- coef(na_noneurot, summary = T)


rans_i <- as.data.frame(rans$person_id[,,"Intercept"]) %>% tibble::rownames_to_column("person_id")
rans_s <- as.data.frame(rans$person_id[,,"sigma_Intercept"]) %>% tibble::rownames_to_column("person_id")
nrow(rans_s)
## [1] 46
nrow(rans_i)
## [1] 46
nrow(data_w)
## [1] 46
dat <- merge(rans_s, rans_i, all = T, by= "person_id")
dat <- merge(dat, data_w, all = T, by= "person_id")

names(dat)[2] <- "Est.SD"
names(dat)[6] <- "Est.M"

fit1 <- lm(neuro_t ~ Est.SD + Est.M , data=dat)
summary(fit1)
## 
## Call:
## lm(formula = neuro_t ~ Est.SD + Est.M, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.36374 -0.66664 -0.01243  0.59837  2.13917 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.8751     0.3871   4.844 1.69e-05 ***
## Est.SD        0.1257     0.2990   0.421   0.6762    
## Est.M         0.4118     0.1766   2.333   0.0244 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8079 on 43 degrees of freedom
## Multiple R-squared:  0.1214, Adjusted R-squared:  0.08057 
## F-statistic: 2.972 on 2 and 43 DF,  p-value: 0.06182
fit1.2 <- lm(neuro_t ~  Est.M , data=dat)
summary(fit1.2)
## 
## Call:
## lm(formula = neuro_t ~ Est.M, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.35305 -0.64865  0.00227  0.60565  2.10682 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7827     0.3158   5.645 1.12e-06 ***
## Est.M         0.4209     0.1736   2.424   0.0195 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8003 on 44 degrees of freedom
## Multiple R-squared:  0.1178, Adjusted R-squared:  0.09777 
## F-statistic: 5.876 on 1 and 44 DF,  p-value: 0.01952
aov <- anova(fit1.2, fit1)
aov
## Analysis of Variance Table
## 
## Model 1: neuro_t ~ Est.M
## Model 2: neuro_t ~ Est.SD + Est.M
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     44 28.179                           
## 2     43 28.063  1   0.11543 0.1769 0.6762
summary(fit1)$r.squared-summary(fit1.2)$r.squared
## [1] 0.003613819
results_SDin <- data.frame(matrix(nrow = 1, ncol = 9))
names(results_SDin) <- c("Dataset","b_SD","Err.SD","p(b_SD)","b_M","Err.M","p(b_M)","ΔR²", "p")

results_SDin$Dataset <- params$file

results_SDin$`ΔR²` <- summary(fit1)$r.squared-summary(fit1.2)$r.squared
results_SDin$`p` <- aov$`Pr(>F)`[2]
results_SDin$Err.SD <- summary(fit1)$coefficients[2,2]
results_SDin$b_SD <- fit1$coefficients[2]

results_SDin$`p(b_SD)` <- summary(fit1)$coefficients[2,4]
results_SDin$b_M <- fit1$coefficients[3]
results_SDin$`p(b_M)` <- summary(fit1)$coefficients[3,4]
results_SDin$Err.M <- summary(fit1)$coefficients[3,2]

  
library("writexl")
write_xlsx(results_SDin,paste0("SD", params$file, ".xlsx"))