1 Data Preparation

dataset <- read.csv(file = params$file, header = T, sep = ",")
#run parallel cores 
options(mc.cores = 8, brms.backend = "cmdstanr", brms.file_refit = "on_change")
#install.packages("loo")
#remotes::install_github("stan-dev/loo")
library(remotes)
library(loo)
library(psych)
library(relativeVariability)
library(brms)
library(cmdstanr)
library(data.table)
library(ggplot2)
library(dplyr)
library(haven)
#library(rstanarm)
library(knitr)
library(rstan)
library(shinystan)

1.1 Rescale Data

dataset$negemo_full_m <- (dataset$negemo_full_m -1)*(4/6)+1
dataset$posemo_full_m <- (dataset$posemo_full_m -1)*(4/6)+1

dataset$neuro_t <- (dataset$neuro_t -1)*(4/6)+1

hist(dataset$negemo_full_m)

1.2 Censoring Data

range(dataset$negemo_full_m, na.rm = T)
## [1] 1 5
range(dataset$posemo_full_m, na.rm = T)
## [1] 1 5
sd(dataset$negemo_full_m, na.rm = T)
## [1] 1.015365
mean(dataset$negemo_full_m, na.rm = T)
## [1] 2.672167
sd(dataset$posemo_full_m, na.rm = T)
## [1] 0.9332975
mean(dataset$posemo_full_m, na.rm = T)
## [1] 2.429311
sd(dataset$neuro_t, na.rm = T)
## [1] 1.178334
mean(dataset$neuro_t, na.rm = T)
## [1] 3.281894
qplot(dataset$negemo_full_, binwidth = .1)

qplot(dataset$posemo_full_, binwidth = .1)

dataset$Acens <- case_when(dataset$negemo_full_m == 1 ~ "left",
                         dataset$negemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens)
## 
##  left  none right 
##   143  2904    44
dataset$Acens_p <- case_when(dataset$posemo_full_m == 1 ~ "left",
                         dataset$posemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens_p)
## 
##  left  none right 
##   350  2724    17

2 BCLSM Negative Emotion

Kn_model_neuro3 <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .99), init = 0.1,
                       file = paste("models/", params$file, "Kn_model_neuro3"))
print(Kn_model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.73      0.05     0.64     0.84 1.00     1940     3916
## sd(sigma_Intercept)     0.38      0.03     0.32     0.44 1.00     5020     8930
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.86      0.21     1.44     2.28 1.00     1250     2158
## sigma_Intercept    -0.41      0.11    -0.64    -0.19 1.00     3613     7123
## neuro_t             0.24      0.06     0.12     0.37 1.00     1368     2139
## sigma_neuro_t       0.01      0.03    -0.05     0.08 1.00     3472     7176
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(Kn_model_neuro3)

pp_check(Kn_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

prior_summary(Kn_model_neuro3)
##                   prior     class      coef     group resp  dpar nlpar lb ub       source
##                  (flat)         b                                                 default
##                  (flat)         b   neuro_t                                  (vectorized)
##                  (flat)         b                          sigma                  default
##                  (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 2.7, 2.5) Intercept                                                 default
##    student_t(3, 0, 2.5) Intercept                          sigma                  default
##    student_t(3, 0, 2.5)        sd                                       0         default
##    student_t(3, 0, 2.5)        sd                          sigma        0         default
##    student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

2.1 Model comparison

2.1.1 scale vs. no scale parameter

Kn_model_neuro2 <- brm(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 6000, warmup = 2000,  chains = 4,
                    control = list(adapt_delta = .98), inits = 0.1 ,
                    file = paste("models/", params$file, "Kn_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kn_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
##          total post-warmup draws = 16000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.72      0.05     0.63     0.83 1.00     1883     3031
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     1.87      0.21     1.47     2.28 1.00     1332     2403
## neuro_t       0.24      0.06     0.13     0.36 1.00     1381     2608
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.76      0.01     0.74     0.78 1.00    18165    11553
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelA <- Kn_model_neuro2
modelB <- Kn_model_neuro3

modelA <- add_criterion(modelA, "loo")
modelB <- add_criterion(modelB, "loo")

loo <- loo_compare(modelA,modelB, criterion = "loo")

loo <- as.data.frame(loo)

loo$Dataset <- params$file
loo <- tibble::rownames_to_column(loo, "model")
library("writexl")
write_xlsx(loo,paste0("loo", params$file, ".xlsx"))

kable(loo)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.0000 0.00000 -3281.150 44.64588 200.8145 8.590109 6562.301 89.29176 Dataset 2 public.csv
modelA -282.0869 25.93122 -3563.237 44.70980 108.6799 3.166631 7126.474 89.41960 Dataset 2 public.csv

2.1.2 censoring vs. no censoring

Kn_model_neuro4 <- brm(bf(negemo_full_m  ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .9999), init = 0,
                       file = paste("models/", params$file, "Kn_model_neuro4"))
print(Kn_model_neuro4)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.68      0.05     0.60     0.78 1.00     2712     6146
## sd(sigma_Intercept)     0.36      0.03     0.31     0.42 1.00     5524     9496
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.93      0.20     1.55     2.31 1.00     1959     4150
## sigma_Intercept    -0.46      0.11    -0.68    -0.25 1.00     4352     7900
## neuro_t             0.23      0.06     0.12     0.34 1.00     1901     3642
## sigma_neuro_t       0.01      0.03    -0.05     0.07 1.00     4410     8193
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_Cens <- data.frame(matrix(nrow = 2, 
                             ncol = 6+1)) 
names(results_Cens) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma"
                    )

results_Cens$model <- c("modelCensoring", "modelnoCensoring")

#NA

results_Cens[1, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_Cens[1, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

results_Cens[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro4, "b_neuro_t")
results_Cens[2, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "negemo_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_Intercept")

2.1.3 BCLSM vs. model C (two-part model)

dataset <- dataset %>% left_join(dataset %>% distinct(person_id, neuro_t) %>% mutate(neuro_Q =Hmisc::cut2(neuro_t, g = 4)), by = c("person_id", "neuro_t"))


Kn_model_neuro_jinxed <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
  sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kn_model_neuro_jinxed"))


print(Kn_model_neuro_jinxed)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.67))     0.63      0.09     0.48     0.84 1.00     1680     3463
## sd(Intercept:neuro_Q[2.67,3.67))     0.61      0.10     0.45     0.84 1.00     1901     3743
## sd(Intercept:neuro_Q[3.67,4.67))     0.77      0.09     0.61     0.98 1.00     1223     2836
## sd(Intercept:neuro_Q[4.67,5.00])     1.07      0.20     0.76     1.54 1.00     1195     2812
## sd(sigma_Intercept)                  0.38      0.03     0.32     0.45 1.00     2730     5188
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.87      0.19     1.49     2.25 1.00      935     1953
## sigma_Intercept    -0.41      0.12    -0.64    -0.19 1.00     1733     3333
## neuro_t             0.24      0.06     0.13     0.36 1.00      755     1858
## sigma_neuro_t       0.01      0.03    -0.05     0.08 1.00     1730     3602
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kn_model_neuro3
modelC <- Kn_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_c <- loo_compare(modelB,modelC, criterion = "loo")

loo_c <- as.data.frame(loo_c)

loo_c$Dataset <- params$file
loo_c <- tibble::rownames_to_column(loo_c, "model")

library("writexl")
write_xlsx(loo_c,paste0("loo_c", params$file, ".xlsx"))

kable(loo_c)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelC 0.0000000 0.0000000 -3280.787 44.51284 199.8632 8.407642 6561.574 89.02567 Dataset 2 public.csv
modelB -0.3634481 0.8202955 -3281.150 44.64588 200.8145 8.590109 6562.301 89.29176 Dataset 2 public.csv

2.2 control for gender

dataset$gender <- as.factor(dataset$gender)

Kn_model_sex <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + gender + (1|person_id),
                       sigma ~ neuro_t + gender), data = dataset,
                       iter = 9000, warmup = 2000, chains = 8,
                       control = list(adapt_delta = .99), inits = 0.1,
                    file = paste("models/", params$file, "Kn_model_sex"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kn_model_sex)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + gender + (1 | person_id) 
##          sigma ~ neuro_t + gender
##    Data: dataset (Number of observations: 3091) 
##   Draws: 8 chains, each with iter = 9000; warmup = 2000; thin = 1;
##          total post-warmup draws = 56000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.72      0.05     0.63     0.84 1.00     6721    12734
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.86      0.25     1.36     2.34 1.00     3782     7825
## sigma_Intercept    -0.29      0.05    -0.38    -0.19 1.00    50402    41449
## neuro_t             0.24      0.06     0.12     0.36 1.00     3761     8245
## gender1             0.03      0.15    -0.25     0.33 1.00     3506     7078
## sigma_neuro_t       0.02      0.01    -0.00     0.04 1.00    57423    44147
## sigma_gender1      -0.11      0.03    -0.17    -0.06 1.00    56582    42365
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kn_model_sex)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kn_model_sex)

3 BCLSM Positive Emotion

Kp_model_neuro3 <- brm(bf(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .95), inits = 0.1,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro3"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kp_model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.65      0.05     0.56     0.75 1.00     4375     8363
## sd(sigma_Intercept)     0.35      0.03     0.30     0.41 1.00     6985    11124
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.43      0.19     3.07     3.79 1.00     2818     5721
## sigma_Intercept    -0.34      0.11    -0.55    -0.13 1.00     6743    10303
## neuro_t            -0.33      0.05    -0.43    -0.22 1.00     3106     6092
## sigma_neuro_t       0.01      0.03    -0.05     0.07 1.00     6972    10963
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kp_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kp_model_neuro3)

prior_summary(Kp_model_neuro3)
##                   prior     class      coef     group resp  dpar nlpar lb ub       source
##                  (flat)         b                                                 default
##                  (flat)         b   neuro_t                                  (vectorized)
##                  (flat)         b                          sigma                  default
##                  (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 2.3, 2.5) Intercept                                                 default
##    student_t(3, 0, 2.5) Intercept                          sigma                  default
##    student_t(3, 0, 2.5)        sd                                       0         default
##    student_t(3, 0, 2.5)        sd                          sigma        0         default
##    student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

3.1 Model comparison

3.1.1 scale vs. no scale parameter

Kp_model_neuro2 <- brm(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 7000, warmup = 2000, chains = 4,
                   control = list(adapt_delta = .95), inits = 0.1,
                    file = paste("models/", params$file, "Kp_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kp_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.63      0.05     0.55     0.73 1.00     4112     7199
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     3.41      0.18     3.05     3.77 1.00     2775     5342
## neuro_t      -0.32      0.05    -0.42    -0.21 1.00     2882     5129
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.79      0.01     0.77     0.81 1.00    38139    14036
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelAp <- Kp_model_neuro2
modelBp <- Kp_model_neuro3


modelAp <- add_criterion(modelAp, "loo")
modelBp <- add_criterion(modelBp, "loo")

looP <- loo_compare(modelAp,modelBp, criterion = "loo")

looP <- as.data.frame(looP)

looP$Dataset <- params$file
looP <- tibble::rownames_to_column(looP, "model")
library("writexl")
write_xlsx(looP,paste0("looP", params$file, ".xlsx"))

kable(looP)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelBp 0.0000 0.00000 -3370.868 42.08365 190.6272 6.872366 6741.736 84.16731 Dataset 2 public.csv
modelAp -218.5871 20.83619 -3589.455 41.60138 106.8277 2.929685 7178.910 83.20275 Dataset 2 public.csv

3.1.2 censoring vs. no censoring

Kp_model_neuro4 <- brm(bf(posemo_full_m ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .9999), inits = 0,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro4"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kp_model_neuro4)
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Warning: There were 231 divergent transitions after warmup. Increasing adapt_delta above 0.9999 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.64      0.06     0.56     0.72 3.14        4       14
## sd(sigma_Intercept)     1.15      0.18     0.94     1.37 3.09        4       14
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.30      0.06     3.20     3.37 3.19        4       14
## sigma_Intercept    -0.25      0.17    -0.46    -0.01 3.21        4       11
## neuro_t            -0.27      0.01    -0.29    -0.25 3.02        5       14
## sigma_neuro_t      -0.10      0.06    -0.18    -0.03 3.32        4       12
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
#pa

results_Cens[1, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_Cens[1, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")


results_Cens[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro4, "b_neuro_t")
results_Cens[2, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "posemo_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_Intercept")

3.1.3 BCLSM vs. model C (two-part model)

Kp_model_neuro_jinxed <- brm(bf(posemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
     sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kp_model_neuro_jinxed"))


print(Kp_model_neuro_jinxed)
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Warning: There were 11 divergent transitions after warmup. Increasing adapt_delta above 0.99 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.67))     0.61      0.15     0.46     0.82 3.29        4       12
## sd(Intercept:neuro_Q[2.67,3.67))     0.61      0.11     0.48     0.79 3.09        5       24
## sd(Intercept:neuro_Q[3.67,4.67))     0.53      0.05     0.49     0.60 3.12        5       13
## sd(Intercept:neuro_Q[4.67,5.00])     0.65      0.09     0.54     0.77 3.69        4       13
## sd(sigma_Intercept)                  0.97      0.06     0.88     1.04 2.01        5       24
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.04      0.13     2.88     3.22 3.16        4       23
## sigma_Intercept     0.07      0.10    -0.11     0.16 2.63        5       11
## neuro_t            -0.20      0.03    -0.25    -0.17 2.89        5       14
## sigma_neuro_t      -0.17      0.03    -0.20    -0.13 3.66        4       11
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kp_model_neuro3
modelC <- Kp_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_cP <- loo_compare(modelB,modelC, criterion = "loo")
## Warning: Not all models have the same y variable. ('yhash' attributes do not match)
loo_cP <- as.data.frame(loo_cP)

loo_cP$Dataset <- params$file
#loo_cP <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_cP,paste0("loo_cP", params$file, ".xlsx"))

kable(loo_cP)
elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.000 0.0000 -3370.868 42.08365 190.6272 6.872366 6741.736 84.16731 Dataset 2 public.csv
modelC -335.531 143.0443 -3706.399 142.84474 1197.0931 192.237605 7412.798 285.68947 Dataset 2 public.csv
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_K <- data.frame(matrix(nrow = 7, 
                             ncol = 8+1)) 
names(results_K) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma", "b_neg_sigma_sex",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma", "b_pos_sigma_sex"
                    )

results_K$model <- c("model1", "model2", "model3",
                  "RSD", "RSD_weight", "SD", "gender")

#NA

results_K[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro2, "b_neuro_t")
results_K[2, "negemo_sigma"] <- extract_param(Kn_model_neuro2, "sigma")

results_K[3, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_K[3, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_K[3, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

#gender 

results_K[7, "negemo_b_neuro"] <- extract_param(Kn_model_sex, "b_neuro_t")
results_K[7, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_sex, "b_sigma_neuro_t")
results_K[7, "negemo_sigma"] <- extract_param(Kn_model_sex, "b_sigma_Intercept")
results_K[7, "b_neg_sigma_sex"] <- extract_param(Kn_model_sex, "b_sigma_gender1")

#pa
results_K[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro2, "b_neuro_t")
results_K[2, "posemo_sigma"] <- extract_param(Kp_model_neuro2, "sigma")

results_K[3, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_K[3, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_K[3, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")

4 RVI (Relative Variability Index)

data_w <- unique(dataset[,2:5])

4.1 Unweighted RVI

data_w$RSD_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_NA[i] <- relativeSD(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
    }

range(data_w$RSD_NA, na.rm = T)
## [1] 0.1150273 0.8354141
mean(data_w$RSD_NA, na.rm = T)
## [1] 0.3772377
sd(data_w$RSD_NA, na.rm = T)
## [1] 0.1271634
data_w$logrsd_n <- log(data_w$RSD_NA)

#plot(data_w$logrsd_n)

m_rvi_na <- brm(logrsd_n ~ neuro_t, data= data_w,
                file = paste("models/", params$file, "Kn_model_logrsd_uw"))
print(m_rvi_na)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n ~ neuro_t 
##    Data: data_w (Number of observations: 112) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.03      0.10    -1.23    -0.83 1.00     3816     2637
## neuro_t      -0.00      0.03    -0.06     0.06 1.00     3788     2572
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.36      0.02     0.31     0.41 1.00     3744     3009
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,3] <- extract_param(m_rvi_na, "b_neuro_t")



data_w$RSD_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_PA[i] <- relativeSD(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
}
## Warning in checkOutput(M, MIN, MAX): NaN returned. Data has a mean equal the minimum
range(data_w$RSD_PA)
## [1] NaN NaN
data_w$logrsd_p <- log(data_w$RSD_PA)


m_rvi_pa <- brm(logrsd_p ~ neuro_t, data= data_w,
                 file = paste("models/", params$file, "Kp_model_logrsd_uw"))
## Warning: Rows containing NAs were excluded from the model.
print(m_rvi_pa)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p ~ neuro_t 
##    Data: data_w (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.06      0.09    -1.25    -0.89 1.00     3484     2894
## neuro_t       0.02      0.03    -0.03     0.07 1.00     3482     2688
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.32      0.02     0.29     0.37 1.00     3749     2663
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,6] <- extract_param(m_rvi_pa, "b_neuro_t")

4.2 Weighted RVI

data_w$mean_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_NA[i] <- mean(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$mean_NA)
## [1] 2.677738
sd(data_w$mean_NA)
## [1] 0.7273519
data_w$mean_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_PA[i] <- mean(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
}

mean(data_w$mean_PA)
## [1] 2.437363
sd(data_w$mean_PA)
## [1] 0.6191169
data_w$weight_NA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_NA[i])) {
      data_w$weight_NA[i] <- maximumSD(data_w$mean_NA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_NA[i] <- data_w$weight_NA[i]^2
    }
  }

mean(data_w$weight_NA)
## [1] 3.399467
sd(data_w$weight_NA)
## [1] 0.8044433
range(data_w$weight_NA)
## [1] 0.137931 4.173913
m_rvi_na_w <- brm(logrsd_n| weights(weight_NA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logrsd"))
print(m_rvi_na_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n | weights(weight_NA) ~ neuro_t 
##    Data: data_w (Number of observations: 112) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.11      0.05    -1.21    -1.00 1.00     3850     2876
## neuro_t       0.02      0.02    -0.01     0.05 1.00     4221     2927
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.35      0.01     0.32     0.37 1.00     3888     2879
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,3] <- extract_param(m_rvi_na_w, "b_neuro_t")



data_w$weight_PA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_PA[i])) {
      data_w$weight_PA[i] <- maximumSD(data_w$mean_PA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_PA[i] <- data_w$weight_PA[i]^2
    }
  }

m_rvi_pa_w <- brm(logrsd_p| weights(weight_PA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logrsd"))
## Warning: Rows containing NAs were excluded from the model.
print(m_rvi_pa_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p | weights(weight_PA) ~ neuro_t 
##    Data: data_w (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.05      0.05    -1.15    -0.96 1.00     5156     2573
## neuro_t       0.01      0.01    -0.02     0.04 1.00     4621     3056
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.32      0.01     0.29     0.34 1.00     3830     3190
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,6] <- extract_param(m_rvi_pa_w, "b_neuro_t")

5 SD

data_w$sd_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_NA[i] <- sd(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

data_w$sd_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_PA[i] <- sd(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$sd_NA)
## [1] 0.6844775
mean(data_w$sd_PA)
## [1] 0.6847533
data_w$sd_PA[data_w$sd_PA == 0] <- NA   
data_w$sd_NA[data_w$sd_NA == 0] <- NA   


data_w$logsd_NA <- log(data_w$sd_NA)
data_w$logsd_PA <- log(data_w$sd_PA)
m_sd_na <- brm(logsd_NA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logsd"))
m_sd_na
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_NA ~ neuro_t 
##    Data: data_w (Number of observations: 112) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.47      0.11    -0.69    -0.25 1.00     4076     3055
## neuro_t       0.01      0.03    -0.06     0.07 1.00     4112     2893
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.39      0.03     0.34     0.45 1.00     3832     3067
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,3] <- extract_param(m_sd_na, "b_neuro_t")

m_sd_pa <- brm(logsd_PA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logsd"))
## Warning: Rows containing NAs were excluded from the model.
m_sd_pa
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_PA ~ neuro_t 
##    Data: data_w (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.29      0.10    -0.49    -0.09 1.00     3785     2883
## neuro_t      -0.04      0.03    -0.09     0.02 1.00     3654     2561
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.34      0.02     0.30     0.39 1.00     4355     2991
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,6] <- extract_param(m_sd_pa, "b_neuro_t")
library("writexl")

write_xlsx(results_K,paste0("", params$file, ".xlsx"))

6 Incremental Validity of SD

na_noneurot <- brm(bf(negemo_full_m | cens(Acens) ~  (1|person_id),
                       sigma ~ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,chains = 4,
                      control = list(adapt_delta = .99), init = 0.1,
                   file = "na_noneurot")

print(na_noneurot)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ (1 | person_id) 
##          sigma ~ (1 | person_id)
##    Data: dataset (Number of observations: 3091) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.78      0.06     0.68     0.90 1.00     1599     2971
## sd(sigma_Intercept)     0.38      0.03     0.32     0.44 1.00     4663     8628
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           2.66      0.08     2.51     2.80 1.01      924     2110
## sigma_Intercept    -0.37      0.04    -0.45    -0.30 1.00     2764     5531
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
rans <- coef(na_noneurot, summary = T)


rans_i <- as.data.frame(rans$person_id[,,"Intercept"]) %>% tibble::rownames_to_column("person_id")
rans_s <- as.data.frame(rans$person_id[,,"sigma_Intercept"]) %>% tibble::rownames_to_column("person_id")
nrow(rans_s)
## [1] 112
nrow(rans_i)
## [1] 112
nrow(data_w)
## [1] 112
dat <- merge(rans_s, rans_i, all = T, by= "person_id")
dat <- merge(dat, data_w, all = T, by= "person_id")

names(dat)[2] <- "Est.SD"
names(dat)[6] <- "Est.M"

fit1 <- lm(neuro_t ~ Est.SD + Est.M , data=dat)
summary(fit1)
## 
## Call:
## lm(formula = neuro_t ~ Est.SD + Est.M, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.37545 -0.77272  0.07309  0.81984  2.75704 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7703     0.3794   4.667 8.76e-06 ***
## Est.SD        0.5682     0.3145   1.807   0.0736 .  
## Est.M         0.6455     0.1445   4.468 1.94e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.096 on 109 degrees of freedom
## Multiple R-squared:  0.156,  Adjusted R-squared:  0.1405 
## F-statistic: 10.07 on 2 and 109 DF,  p-value: 9.697e-05
fit1.2 <- lm(neuro_t ~  Est.M , data=dat)
summary(fit1.2)
## 
## Call:
## lm(formula = neuro_t ~ Est.M, data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3493 -0.8991  0.1921  0.8066  2.4416 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7776     0.3832   4.639 9.73e-06 ***
## Est.M         0.5635     0.1386   4.067 8.99e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.107 on 110 degrees of freedom
## Multiple R-squared:  0.1307, Adjusted R-squared:  0.1228 
## F-statistic: 16.54 on 1 and 110 DF,  p-value: 8.991e-05
aov <- anova(fit1.2, fit1)
aov
## Analysis of Variance Table
## 
## Model 1: neuro_t ~ Est.M
## Model 2: neuro_t ~ Est.SD + Est.M
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)  
## 1    110 134.82                             
## 2    109 130.90  1    3.9192 3.2635 0.0736 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fit1)$r.squared-summary(fit1.2)$r.squared
## [1] 0.02527091
results_SDin <- data.frame(matrix(nrow = 1, ncol = 9))
names(results_SDin) <- c("Dataset","b_SD","Err.SD","p(b_SD)","b_M","Err.M","p(b_M)","ΔR²", "p")

results_SDin$Dataset <- params$file

results_SDin$`ΔR²` <- summary(fit1)$r.squared-summary(fit1.2)$r.squared
results_SDin$`p` <- aov$`Pr(>F)`[2]
results_SDin$Err.SD <- summary(fit1)$coefficients[2,2]
results_SDin$b_SD <- fit1$coefficients[2]

results_SDin$`p(b_SD)` <- summary(fit1)$coefficients[2,4]
results_SDin$b_M <- fit1$coefficients[3]
results_SDin$`p(b_M)` <- summary(fit1)$coefficients[3,4]
results_SDin$Err.M <- summary(fit1)$coefficients[3,2]

  
library("writexl")
write_xlsx(results_SDin,paste0("SD", params$file, ".xlsx"))