1 Data Preparation

dataset <- read.csv(file = params$file, header = T, sep = ",")
#run parallel cores 
options(mc.cores = 8, brms.backend = "cmdstanr", brms.file_refit = "on_change")
#install.packages("loo")
#remotes::install_github("stan-dev/loo")
library(remotes)
library(loo)
library(psych)
library(relativeVariability)
library(brms)
library(cmdstanr)
library(data.table)
library(ggplot2)
library(dplyr)
library(haven)
#library(rstanarm)
library(knitr)
library(rstan)
library(shinystan)

1.1 Rescale Data

dataset$negemo_full_m <- (dataset$negemo_full_m -1)*(4/6)+1
dataset$posemo_full_m <- (dataset$posemo_full_m -1)*(4/6)+1

dataset$neuro_t <- (dataset$neuro_t -1)*(4/6)+1

hist(dataset$negemo_full_m)

1.2 Censoring Data

range(dataset$negemo_full_m, na.rm = T)
## [1] 1 5
range(dataset$posemo_full_m, na.rm = T)
## [1] 1 5
sd(dataset$negemo_full_m, na.rm = T)
## [1] 0.7831137
mean(dataset$negemo_full_m, na.rm = T)
## [1] 2.219312
sd(dataset$posemo_full_m, na.rm = T)
## [1] 0.5487185
mean(dataset$posemo_full_m, na.rm = T)
## [1] 1.210022
sd(dataset$neuro_t, na.rm = T)
## [1] 1.108445
mean(dataset$neuro_t, na.rm = T)
## [1] 2.797821
qplot(dataset$negemo_full_, binwidth = .1)

qplot(dataset$posemo_full_, binwidth = .1)

dataset$Acens <- case_when(dataset$negemo_full_m == 1 ~ "left",
                         dataset$negemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens)
## 
##  left  none right 
##     8   751     6
dataset$Acens_p <- case_when(dataset$posemo_full_m == 1 ~ "left",
                         dataset$posemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens_p)
## 
##  left  none right 
##   601   158     6

2 BCLSM Negative Emotion

Kn_model_neuro3 <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .99), init = 0.1,
                       file = paste("models/", params$file, "Kn_model_neuro3"))
print(Kn_model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.61      0.05     0.52     0.72 1.00     2978     5042
## sd(sigma_Intercept)     0.37      0.05     0.28     0.47 1.00     5607    10450
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.73      0.17     1.40     2.06 1.00     1416     3373
## sigma_Intercept    -1.09      0.13    -1.35    -0.84 1.00     6833    10537
## neuro_t             0.17      0.06     0.06     0.28 1.00     1615     4024
## sigma_neuro_t       0.11      0.04     0.03     0.20 1.00     7049    11478
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(Kn_model_neuro3)

pp_check(Kn_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

prior_summary(Kn_model_neuro3)
##                 prior     class      coef     group resp  dpar nlpar lb ub       source
##                (flat)         b                                                 default
##                (flat)         b   neuro_t                                  (vectorized)
##                (flat)         b                          sigma                  default
##                (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 2, 2.5) Intercept                                                 default
##  student_t(3, 0, 2.5) Intercept                          sigma                  default
##  student_t(3, 0, 2.5)        sd                                       0         default
##  student_t(3, 0, 2.5)        sd                          sigma        0         default
##  student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##  student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##  student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##  student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

2.1 Model comparison

2.1.1 scale vs. no scale parameter

Kn_model_neuro2 <- brm(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 6000, warmup = 2000,  chains = 4,
                    control = list(adapt_delta = .98), inits = 0.1 ,
                    file = paste("models/", params$file, "Kn_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kn_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 765) 
##   Draws: 8 chains, each with iter = 6000; warmup = 2000; thin = 1;
##          total post-warmup draws = 32000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.62      0.05     0.53     0.72 1.00     6600    12445
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     1.75      0.17     1.42     2.08 1.00     4809     9683
## neuro_t       0.17      0.06     0.06     0.28 1.00     4803    10156
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.52      0.01     0.49     0.55 1.00    41885    25715
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelA <- Kn_model_neuro2
modelB <- Kn_model_neuro3

modelA <- add_criterion(modelA, "loo")
modelB <- add_criterion(modelB, "loo")

loo <- loo_compare(modelA,modelB, criterion = "loo")

loo <- as.data.frame(loo)

loo$Dataset <- params$file
loo <- tibble::rownames_to_column(loo, "model")
library("writexl")
write_xlsx(loo,paste0("loo", params$file, ".xlsx"))

kable(loo)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.00000 0.00000 -596.5377 25.06314 163.20233 9.865290 1193.075 50.12628 Dataset 3 public.csv
modelA -40.51907 10.55582 -637.0568 23.62287 97.39616 5.680872 1274.114 47.24574 Dataset 3 public.csv

2.1.2 censoring vs. no censoring

Kn_model_neuro4 <- brm(bf(negemo_full_m  ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .9999), init = 0,
                       file = paste("models/", params$file, "Kn_model_neuro4"))
print(Kn_model_neuro4)
## Warning: There were 4 divergent transitions after warmup. Increasing adapt_delta above 0.99 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.60      0.04     0.52     0.69 1.00     4707     8132
## sd(sigma_Intercept)     0.42      0.05     0.32     0.53 1.00     5332     9106
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.76      0.16     1.45     2.07 1.00     2930     5551
## sigma_Intercept    -1.15      0.14    -1.42    -0.88 1.00     9526    12171
## neuro_t             0.16      0.05     0.06     0.27 1.00     3252     6114
## sigma_neuro_t       0.12      0.05     0.03     0.22 1.00     9986    12899
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_Cens <- data.frame(matrix(nrow = 2, 
                             ncol = 6+1)) 
names(results_Cens) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma"
                    )

results_Cens$model <- c("modelCensoring", "modelnoCensoring")

#NA

results_Cens[1, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_Cens[1, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

results_Cens[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro4, "b_neuro_t")
results_Cens[2, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "negemo_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_Intercept")

2.1.3 BCLSM vs. model C (two-part model)

dataset <- dataset %>% left_join(dataset %>% distinct(person_id, neuro_t) %>% mutate(neuro_Q =Hmisc::cut2(neuro_t, g = 4)), by = c("person_id", "neuro_t"))


Kn_model_neuro_jinxed <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
  sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kn_model_neuro_jinxed"))


print(Kn_model_neuro_jinxed)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,1.92))     0.56      0.09     0.41     0.77 1.00     2232     4213
## sd(Intercept:neuro_Q[1.92,2.75))     0.53      0.09     0.38     0.73 1.00     2157     4413
## sd(Intercept:neuro_Q[2.75,3.75))     0.87      0.13     0.66     1.15 1.00     1459     2859
## sd(Intercept:neuro_Q[3.75,4.92])     0.45      0.09     0.30     0.66 1.00     2702     5173
## sd(sigma_Intercept)                  0.37      0.05     0.28     0.47 1.00     3271     5734
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.77      0.15     1.49     2.07 1.00     1200     2402
## sigma_Intercept    -1.09      0.13    -1.34    -0.83 1.00     3781     5945
## neuro_t             0.15      0.05     0.06     0.25 1.00     1313     2697
## sigma_neuro_t       0.11      0.04     0.03     0.20 1.00     3822     6093
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kn_model_neuro3
modelC <- Kn_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_c <- loo_compare(modelB,modelC, criterion = "loo")

loo_c <- as.data.frame(loo_c)

loo_c$Dataset <- params$file
loo_c <- tibble::rownames_to_column(loo_c, "model")

library("writexl")
write_xlsx(loo_c,paste0("loo_c", params$file, ".xlsx"))

kable(loo_c)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelC 0.000000 0.000000 -592.0251 24.63983 159.3673 9.11699 1184.050 49.27966 Dataset 3 public.csv
modelB -4.512554 2.388346 -596.5377 25.06314 163.2023 9.86529 1193.075 50.12628 Dataset 3 public.csv

2.2 control for gender

dataset$gender <- as.factor(dataset$gender)

Kn_model_sex <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + gender + (1|person_id),
                       sigma ~ neuro_t + gender), data = dataset,
                       iter = 9000, warmup = 2000, chains = 8,
                       control = list(adapt_delta = .99), inits = 0.1,
                    file = paste("models/", params$file, "Kn_model_sex"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kn_model_sex)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + gender + (1 | person_id) 
##          sigma ~ neuro_t + gender
##    Data: dataset (Number of observations: 765) 
##   Draws: 8 chains, each with iter = 9000; warmup = 2000; thin = 1;
##          total post-warmup draws = 56000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.62      0.05     0.53     0.72 1.00    11109    20495
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.81      0.19     1.43     2.19 1.00     6669    13725
## sigma_Intercept    -0.76      0.09    -0.93    -0.59 1.00    50930    41704
## neuro_t             0.16      0.06     0.05     0.28 1.00     7446    14444
## gender1            -0.08      0.13    -0.33     0.17 1.00     6704    14069
## sigma_neuro_t       0.07      0.03     0.02     0.11 1.00    54723    42621
## sigma_gender1      -0.17      0.06    -0.28    -0.06 1.00    54219    42149
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kn_model_sex)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kn_model_sex)

3 BCLSM Positive Emotion

Kp_model_neuro3 <- brm(bf(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .95), inits = 0.1,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro3"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kp_model_neuro3)
## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           1.34      0.20     0.99     1.77 1.00     4085     6585
## sd(sigma_Intercept)     0.42      0.11     0.21     0.64 1.00     3111     2789
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept          -0.04      0.49    -1.05     0.89 1.00     7685    11530
## sigma_Intercept     0.10      0.24    -0.38     0.57 1.00    13240    14867
## neuro_t            -0.09      0.16    -0.41     0.23 1.00     7189    11520
## sigma_neuro_t      -0.06      0.08    -0.22     0.10 1.00    12536    15026
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kp_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kp_model_neuro3)

prior_summary(Kp_model_neuro3)
##                 prior     class      coef     group resp  dpar nlpar lb ub       source
##                (flat)         b                                                 default
##                (flat)         b   neuro_t                                  (vectorized)
##                (flat)         b                          sigma                  default
##                (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 1, 2.5) Intercept                                                 default
##  student_t(3, 0, 2.5) Intercept                          sigma                  default
##  student_t(3, 0, 2.5)        sd                                       0         default
##  student_t(3, 0, 2.5)        sd                          sigma        0         default
##  student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##  student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##  student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##  student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

3.1 Model comparison

3.1.1 scale vs. no scale parameter

Kp_model_neuro2 <- brm(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 7000, warmup = 2000, chains = 4,
                   control = list(adapt_delta = .95), inits = 0.1,
                    file = paste("models/", params$file, "Kp_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kp_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.44      0.18     1.13     1.81 1.00     7075    11464
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.03      0.46    -0.92     0.89 1.00     7676    11670
## neuro_t      -0.14      0.15    -0.44     0.16 1.00     7544    12143
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     1.06      0.07     0.93     1.22 1.00    22369    15764
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelAp <- Kp_model_neuro2
modelBp <- Kp_model_neuro3


modelAp <- add_criterion(modelAp, "loo")
modelBp <- add_criterion(modelBp, "loo")

looP <- loo_compare(modelAp,modelBp, criterion = "loo")

looP <- as.data.frame(looP)

looP$Dataset <- params$file
looP <- tibble::rownames_to_column(looP, "model")
library("writexl")
write_xlsx(looP,paste0("looP", params$file, ".xlsx"))

kable(looP)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelBp 0.000000 0.000000 -412.6861 24.0345 86.52154 7.464080 825.3721 48.06901 Dataset 3 public.csv
modelAp -8.741227 4.464136 -421.4273 24.4970 70.34715 7.020219 842.8546 48.99401 Dataset 3 public.csv

3.1.2 censoring vs. no censoring

Kp_model_neuro4 <- brm(bf(posemo_full_m ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .9999), inits = 0,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro4"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(Kp_model_neuro4)
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Warning: There were 2897 divergent transitions after warmup. Increasing adapt_delta above 0.9999 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.18      0.12     0.02     0.32 3.75        4       12
## sd(sigma_Intercept)    11.17      2.08     8.23    14.96 3.17        4       11
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.05      0.03     1.00     1.08 3.53        4        9
## sigma_Intercept    -2.00      0.91    -3.28    -0.98 4.11        4       14
## neuro_t            -0.00      0.01    -0.01     0.00 3.66        4       13
## sigma_neuro_t      -0.32      0.23    -0.63    -0.01 2.97        5       12
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
#pa

results_Cens[1, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_Cens[1, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")


results_Cens[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro4, "b_neuro_t")
results_Cens[2, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "posemo_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_Intercept")

3.1.3 BCLSM vs. model C (two-part model)

Kp_model_neuro_jinxed <- brm(bf(posemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
     sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kp_model_neuro_jinxed"))


print(Kp_model_neuro_jinxed)
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Warning: There were 839 divergent transitions after warmup. Increasing adapt_delta above 0.99 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,1.92))     0.28      0.20     0.10     0.61 3.38        4       14
## sd(Intercept:neuro_Q[1.92,2.75))     0.50      0.27     0.31     0.96 3.27        4       11
## sd(Intercept:neuro_Q[2.75,3.75))     0.44      0.20     0.24     0.73 4.09        4       11
## sd(Intercept:neuro_Q[3.75,4.92])     0.35      0.31     0.07     0.86 2.95        5       20
## sd(sigma_Intercept)                  9.38      2.79     7.50    14.32 2.31        5       11
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.07      0.04     1.02     1.11 3.37        4       11
## sigma_Intercept    -2.18      0.45    -2.94    -1.65 3.42        4       11
## neuro_t             0.00      0.01    -0.01     0.01 3.25        4       15
## sigma_neuro_t      -0.33      0.18    -0.53    -0.07 3.39        4       11
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kp_model_neuro3
modelC <- Kp_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_cP <- loo_compare(modelB,modelC, criterion = "loo")
## Warning: Not all models have the same y variable. ('yhash' attributes do not match)
loo_cP <- as.data.frame(loo_cP)

loo_cP$Dataset <- params$file
#loo_cP <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_cP,paste0("loo_cP", params$file, ".xlsx"))

kable(loo_cP)
elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.000 0.0000 -412.6861 24.0345 86.52154 7.46408 825.3721 48.06901 Dataset 3 public.csv
modelC -2201.829 762.0937 -2614.5153 761.8813 5370.30633 785.31845 5229.0306 1523.76258 Dataset 3 public.csv
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_K <- data.frame(matrix(nrow = 7, 
                             ncol = 8+1)) 
names(results_K) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma", "b_neg_sigma_sex",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma", "b_pos_sigma_sex"
                    )

results_K$model <- c("model1", "model2", "model3",
                  "RSD", "RSD_weight", "SD", "gender")

#NA

results_K[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro2, "b_neuro_t")
results_K[2, "negemo_sigma"] <- extract_param(Kn_model_neuro2, "sigma")

results_K[3, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_K[3, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_K[3, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

#gender 

results_K[7, "negemo_b_neuro"] <- extract_param(Kn_model_sex, "b_neuro_t")
results_K[7, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_sex, "b_sigma_neuro_t")
results_K[7, "negemo_sigma"] <- extract_param(Kn_model_sex, "b_sigma_Intercept")
results_K[7, "b_neg_sigma_sex"] <- extract_param(Kn_model_sex, "b_sigma_gender1")

#pa
results_K[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro2, "b_neuro_t")
results_K[2, "posemo_sigma"] <- extract_param(Kp_model_neuro2, "sigma")

results_K[3, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_K[3, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_K[3, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")

4 RVI (Relative Variability Index)

data_w <- unique(dataset[,2:5])

4.1 Unweighted RVI

data_w$RSD_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_NA[i] <- relativeSD(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
    }

range(data_w$RSD_NA, na.rm = T)
## [1] 0.06659452 1.00000000
mean(data_w$RSD_NA, na.rm = T)
## [1] 0.2698548
sd(data_w$RSD_NA, na.rm = T)
## [1] 0.1216304
data_w$logrsd_n <- log(data_w$RSD_NA)

#plot(data_w$logrsd_n)

m_rvi_na <- brm(logrsd_n ~ neuro_t, data= data_w,
                file = paste("models/", params$file, "Kn_model_logrsd_uw"))
print(m_rvi_na)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n ~ neuro_t 
##    Data: data_w (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.62      0.11    -1.83    -1.40 1.00     4386     3078
## neuro_t       0.08      0.04     0.01     0.15 1.00     4256     2870
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.42      0.03     0.37     0.48 1.00     4371     3175
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,3] <- extract_param(m_rvi_na, "b_neuro_t")



data_w$RSD_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_PA[i] <- relativeSD(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
}

range(data_w$RSD_PA)
## [1] NaN NaN
data_w$logrsd_p <- log(data_w$RSD_PA)


m_rvi_pa <- brm(logrsd_p ~ neuro_t, data= data_w,
                 file = paste("models/", params$file, "Kp_model_logrsd_uw"))
print(m_rvi_pa)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p ~ neuro_t 
##    Data: data_w (Number of observations: 59) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.42      0.18    -0.77    -0.06 1.00     3575     2785
## neuro_t      -0.02      0.06    -0.14     0.11 1.00     3766     2909
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.48      0.05     0.40     0.58 1.00     3493     2837
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,6] <- extract_param(m_rvi_pa, "b_neuro_t")

4.2 Weighted RVI

data_w$mean_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_NA[i] <- mean(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$mean_NA)
## [1] 2.231716
sd(data_w$mean_NA)
## [1] 0.6386588
data_w$mean_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_PA[i] <- mean(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
}

mean(data_w$mean_PA)
## [1] 1.214796
sd(data_w$mean_PA)
## [1] 0.4414877
data_w$weight_NA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_NA[i])) {
      data_w$weight_NA[i] <- maximumSD(data_w$mean_NA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_NA[i] <- data_w$weight_NA[i]^2
    }
  }

mean(data_w$weight_NA)
## [1] 3.084018
sd(data_w$weight_NA)
## [1] 1.0337
range(data_w$weight_NA)
## [1] 0.000000 4.821181
m_rvi_na_w <- brm(logrsd_n| weights(weight_NA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logrsd"))
## Warning: Rows containing NAs were excluded from the model.
print(m_rvi_na_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n | weights(weight_NA) ~ neuro_t 
##    Data: data_w (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.52      0.06    -1.63    -1.41 1.00     3501     2795
## neuro_t       0.06      0.02     0.02     0.10 1.00     3445     2588
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.37      0.01     0.34     0.40 1.00     3827     2670
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,3] <- extract_param(m_rvi_na_w, "b_neuro_t")



data_w$weight_PA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_PA[i])) {
      data_w$weight_PA[i] <- maximumSD(data_w$mean_PA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_PA[i] <- data_w$weight_PA[i]^2
    }
  }

m_rvi_pa_w <- brm(logrsd_p| weights(weight_PA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logrsd"))
## Warning: Rows containing NAs were excluded from the model.
print(m_rvi_pa_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p | weights(weight_PA) ~ neuro_t 
##    Data: data_w (Number of observations: 59) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.49      0.19    -0.87    -0.12 1.00     3783     2685
## neuro_t      -0.13      0.07    -0.27    -0.00 1.00     3707     3022
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.47      0.05     0.39     0.57 1.00     3933     3128
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,6] <- extract_param(m_rvi_pa_w, "b_neuro_t")

5 SD

data_w$sd_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_NA[i] <- sd(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

data_w$sd_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_PA[i] <- sd(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$sd_NA)
## [1] 0.4657867
mean(data_w$sd_PA)
## [1] 0.227631
data_w$sd_PA[data_w$sd_PA == 0] <- NA   
data_w$sd_NA[data_w$sd_NA == 0] <- NA   


data_w$logsd_NA <- log(data_w$sd_NA)
data_w$logsd_PA <- log(data_w$sd_PA)
m_sd_na <- brm(logsd_NA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logsd"))
## Warning: Rows containing NAs were excluded from the model.
m_sd_na
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_NA ~ neuro_t 
##    Data: data_w (Number of observations: 111) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.18      0.14    -1.45    -0.91 1.00     4025     2983
## neuro_t       0.11      0.05     0.02     0.19 1.00     3989     3027
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.53      0.04     0.46     0.61 1.00     4187     3174
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,3] <- extract_param(m_sd_na, "b_neuro_t")

m_sd_pa <- brm(logsd_PA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logsd"))
## Warning: Rows containing NAs were excluded from the model.
m_sd_pa
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_PA ~ neuro_t 
##    Data: data_w (Number of observations: 59) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.78      0.25    -1.28    -0.29 1.00     3853     2942
## neuro_t      -0.09      0.09    -0.25     0.08 1.00     3849     3240
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.65      0.06     0.54     0.79 1.00     3281     2824
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,6] <- extract_param(m_sd_pa, "b_neuro_t")
library("writexl")

write_xlsx(results_K,paste0("", params$file, ".xlsx"))

6 Incremental Validity of SD

na_noneurot <- brm(bf(negemo_full_m | cens(Acens) ~  (1|person_id),
                       sigma ~ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,chains = 4,
                      control = list(adapt_delta = .99), init = 0.1,
                   file = "na_noneurot")

print(na_noneurot)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ (1 | person_id) 
##          sigma ~ (1 | person_id)
##    Data: dataset (Number of observations: 765) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 112) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.64      0.05     0.55     0.75 1.00     3807     7154
## sd(sigma_Intercept)     0.38      0.05     0.29     0.48 1.00     5990    10572
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           2.21      0.06     2.09     2.34 1.00     2226     4780
## sigma_Intercept    -0.77      0.05    -0.87    -0.68 1.00     8403    11523
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
rans <- coef(na_noneurot, summary = T)


rans_i <- as.data.frame(rans$person_id[,,"Intercept"]) %>% tibble::rownames_to_column("person_id")
rans_s <- as.data.frame(rans$person_id[,,"sigma_Intercept"]) %>% tibble::rownames_to_column("person_id")
nrow(rans_s)
## [1] 112
nrow(rans_i)
## [1] 112
nrow(data_w)
## [1] 112
dat <- merge(rans_s, rans_i, all = T, by= "person_id")
dat <- merge(dat, data_w, all = T, by= "person_id")

names(dat)[2] <- "Est.SD"
names(dat)[6] <- "Est.M"

fit1 <- lm(neuro_t ~ Est.SD + Est.M , data=dat)
summary(fit1)
## 
## Call:
## lm(formula = neuro_t ~ Est.SD + Est.M, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.99126 -0.88123 -0.04674  0.80651  2.02984 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3903     0.6637   3.601 0.000478 ***
## Est.SD        0.5601     0.4096   1.368 0.174222    
## Est.M         0.3759     0.1953   1.925 0.056865 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.061 on 109 degrees of freedom
## Multiple R-squared:  0.09595,    Adjusted R-squared:  0.07936 
## F-statistic: 5.784 on 2 and 109 DF,  p-value: 0.004097
fit1.2 <- lm(neuro_t ~  Est.M , data=dat)
summary(fit1.2)
## 
## Call:
## lm(formula = neuro_t ~ Est.M, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.78033 -0.91907 -0.06441  0.87554  2.05186 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.6467     0.3821   4.309 3.58e-05 ***
## Est.M         0.5168     0.1666   3.102  0.00244 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.065 on 110 degrees of freedom
## Multiple R-squared:  0.08044,    Adjusted R-squared:  0.07208 
## F-statistic: 9.622 on 1 and 110 DF,  p-value: 0.002443
aov <- anova(fit1.2, fit1)
aov
## Analysis of Variance Table
## 
## Model 1: neuro_t ~ Est.M
## Model 2: neuro_t ~ Est.SD + Est.M
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    110 124.77                           
## 2    109 122.66  1     2.105 1.8706 0.1742
summary(fit1)$r.squared-summary(fit1.2)$r.squared
## [1] 0.01551462
results_SDin <- data.frame(matrix(nrow = 1, ncol = 9))
names(results_SDin) <- c("Dataset","b_SD","Err.SD","p(b_SD)","b_M","Err.M","p(b_M)","ΔR²", "p")

results_SDin$Dataset <- params$file

results_SDin$`ΔR²` <- summary(fit1)$r.squared-summary(fit1.2)$r.squared
results_SDin$`p` <- aov$`Pr(>F)`[2]
results_SDin$Err.SD <- summary(fit1)$coefficients[2,2]
results_SDin$b_SD <- fit1$coefficients[2]

results_SDin$`p(b_SD)` <- summary(fit1)$coefficients[2,4]
results_SDin$b_M <- fit1$coefficients[3]
results_SDin$`p(b_M)` <- summary(fit1)$coefficients[3,4]
results_SDin$Err.M <- summary(fit1)$coefficients[3,2]

  
library("writexl")
write_xlsx(results_SDin,paste0("SD", params$file, ".xlsx"))