1 Data Preparation

dataset <- read.csv(file = params$file, header = T, sep = ",")
#run parallel cores 
options(mc.cores = 8, brms.backend = "cmdstanr", brms.file_refit = "on_change")
#install.packages("loo")
#remotes::install_github("stan-dev/loo")
library(remotes)
library(loo)
library(psych)
library(relativeVariability)
library(brms)
library(cmdstanr)
library(data.table)
library(ggplot2)
library(dplyr)
library(haven)
#library(rstanarm)
library(knitr)
library(rstan)
library(shinystan)

1.1 Rescale Data

dataset$negemo_full_m <- (dataset$negemo_full_m -1)*(4/6)+1
dataset$posemo_full_m <- (dataset$posemo_full_m -1)*(4/6)+1

dataset$neuro_t <- (dataset$neuro_t -1)*(4/6)+1

hist(dataset$negemo_full_m)

1.2 Censoring Data

range(dataset$negemo_full_m, na.rm = T)
## [1] 1 5
range(dataset$posemo_full_m, na.rm = T)
## [1] 1 5
sd(dataset$negemo_full_m, na.rm = T)
## [1] 0.7813725
mean(dataset$negemo_full_m, na.rm = T)
## [1] 1.884241
sd(dataset$posemo_full_m, na.rm = T)
## [1] 0.816388
mean(dataset$posemo_full_m, na.rm = T)
## [1] 3.527882
sd(dataset$neuro_t, na.rm = T)
## [1] 0.7994541
mean(dataset$neuro_t, na.rm = T)
## [1] 2.962274
qplot(dataset$negemo_full_, binwidth = .1)
## Warning: Removed 5743 rows containing non-finite values (`stat_bin()`).

qplot(dataset$posemo_full_, binwidth = .1)
## Warning: Removed 5732 rows containing non-finite values (`stat_bin()`).

dataset$Acens <- case_when(dataset$negemo_full_m == 1 ~ "left",
                         dataset$negemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens)
## 
##  left  none right 
##  3439 31631    25
dataset$Acens_p <- case_when(dataset$posemo_full_m == 1 ~ "left",
                         dataset$posemo_full_m == 5 ~ "right",
                         TRUE ~ "none")
table(dataset$Acens_p)
## 
##  left  none right 
##    61 34074   960

2 BCLSM Negative Emotion

Kn_model_neuro3 <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .99), init = 0.1,
                       file = paste("models/", params$file, "Kn_model_neuro3"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 29352) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.59      0.03     0.53     0.65 1.01      764     1970
## sd(sigma_Intercept)     0.40      0.02     0.36     0.45 1.00     1002     1593
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           0.88      0.17     0.55     1.21 1.02      364     1076
## sigma_Intercept    -0.66      0.12    -0.89    -0.43 1.01      702     1298
## neuro_t             0.31      0.05     0.21     0.42 1.02      391     1173
## sigma_neuro_t       0.03      0.04    -0.04     0.10 1.01      681     1347
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(Kn_model_neuro3)

pp_check(Kn_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

prior_summary(Kn_model_neuro3)
##                   prior     class      coef     group resp  dpar nlpar lb ub       source
##                  (flat)         b                                                 default
##                  (flat)         b   neuro_t                                  (vectorized)
##                  (flat)         b                          sigma                  default
##                  (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 1.7, 2.5) Intercept                                                 default
##    student_t(3, 0, 2.5) Intercept                          sigma                  default
##    student_t(3, 0, 2.5)        sd                                       0         default
##    student_t(3, 0, 2.5)        sd                          sigma        0         default
##    student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

2.1 Model comparison

2.1.1 scale vs. no scale parameter

Kn_model_neuro2 <- brm(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 6000, warmup = 2000,  chains = 4,
                    control = list(adapt_delta = .98), inits = 0.1 ,
                    file = paste("models/", params$file, "Kn_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 29352) 
##   Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
##          total post-warmup draws = 16000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.57      0.03     0.51     0.63 1.02      385     1079
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.95      0.16     0.62     1.26 1.02      216      562
## neuro_t       0.30      0.05     0.20     0.41 1.01      264      568
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.62      0.00     0.62     0.63 1.00    14913    12160
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelA <- Kn_model_neuro2
modelB <- Kn_model_neuro3

modelA <- add_criterion(modelA, "loo")
modelB <- add_criterion(modelB, "loo")

loo <- loo_compare(modelA,modelB, criterion = "loo")

loo <- as.data.frame(loo)

loo$Dataset <- params$file
loo <- tibble::rownames_to_column(loo, "model")
library("writexl")
write_xlsx(loo,paste0("loo", params$file, ".xlsx"))

kable(loo)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.000 0.0000 -24013.13 181.2845 516.5601 16.962017 48026.25 362.5689 Dataset 4 public.csv
modelA -3198.284 109.1869 -27211.41 185.7813 178.6113 2.427518 54422.82 371.5627 Dataset 4 public.csv

2.1.2 censoring vs. no censoring

Kn_model_neuro4 <- brm(bf(negemo_full_m  ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t+ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,  chains = 4,
                       control = list(adapt_delta = .9999), init = 0,
                       file = paste("models/", params$file, "Kn_model_neuro4"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro4)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 29352) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.50      0.03     0.45     0.56 1.00      667     1602
## sd(sigma_Intercept)     0.38      0.02     0.34     0.42 1.00      907     2391
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.11      0.15     0.81     1.41 1.01      371      742
## sigma_Intercept    -0.98      0.11    -1.21    -0.76 1.00      534     1454
## neuro_t             0.26      0.05     0.16     0.36 1.01      383      700
## sigma_neuro_t       0.10      0.04     0.03     0.17 1.01      495     1340
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_Cens <- data.frame(matrix(nrow = 2, 
                             ncol = 6+1)) 
names(results_Cens) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma"
                    )

results_Cens$model <- c("modelCensoring", "modelnoCensoring")

#NA

results_Cens[1, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_Cens[1, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

results_Cens[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro4, "b_neuro_t")
results_Cens[2, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "negemo_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_Intercept")

2.1.3 BCLSM vs. model C (two-part model)

dataset <- dataset %>% left_join(dataset %>% distinct(person_id, neuro_t) %>% mutate(neuro_Q =Hmisc::cut2(neuro_t, g = 4)), by = c("person_id", "neuro_t"))


Kn_model_neuro_jinxed <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
  sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kn_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro_jinxed)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 29352) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.12,2.62))     0.49      0.05     0.39     0.60 1.01      663     1292
## sd(Intercept:neuro_Q[2.62,3.12))     0.66      0.08     0.52     0.83 1.00      387      900
## sd(Intercept:neuro_Q[3.12,3.62))     0.50      0.06     0.40     0.63 1.00      657     1408
## sd(Intercept:neuro_Q[3.62,4.88])     0.72      0.08     0.58     0.90 1.01      530      938
## sd(sigma_Intercept)                  0.39      0.02     0.35     0.44 1.01      494     1117
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           0.88      0.16     0.57     1.20 1.04      202      407
## sigma_Intercept    -0.67      0.12    -0.90    -0.44 1.01      362      738
## neuro_t             0.31      0.05     0.20     0.42 1.04      201      383
## sigma_neuro_t       0.04      0.04    -0.04     0.11 1.01      368      693
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kn_model_neuro3
modelC <- Kn_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_c <- loo_compare(modelB,modelC, criterion = "loo")

loo_c <- as.data.frame(loo_c)

loo_c$Dataset <- params$file
loo_c <- tibble::rownames_to_column(loo_c, "model")

library("writexl")
write_xlsx(loo_c,paste0("loo_c", params$file, ".xlsx"))

kable(loo_c)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelB 0.000000 0.0000000 -24013.13 181.2845 516.5601 16.96202 48026.25 362.5689 Dataset 4 public.csv
modelC -2.180118 0.6852423 -24015.31 181.3500 519.0583 17.09484 48030.61 362.7001 Dataset 4 public.csv

2.2 control for gender

dataset$gender <- as.factor(dataset$gender)

Kn_model_sex <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + gender + (1|person_id),
                       sigma ~ neuro_t + gender), data = dataset,
                       iter = 9000, warmup = 2000, chains = 8,
                       control = list(adapt_delta = .99), inits = 0.1,
                    file = paste("models/", params$file, "Kn_model_sex"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_sex)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + gender + (1 | person_id) 
##          sigma ~ neuro_t + gender
##    Data: dataset (Number of observations: 29190) 
##   Draws: 8 chains, each with iter = 9000; warmup = 2000; thin = 1;
##          total post-warmup draws = 56000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 175) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.56      0.03     0.50     0.62 1.00     1592     3011
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           0.92      0.17     0.58     1.27 1.01     1021     2178
## sigma_Intercept    -0.61      0.02    -0.65    -0.58 1.00    29426    34309
## neuro_t             0.31      0.05     0.20     0.41 1.01     1008     1909
## gender1            -0.00      0.09    -0.18     0.18 1.02      670     1837
## sigma_neuro_t       0.05      0.01     0.04     0.06 1.00    32130    35169
## sigma_gender1      -0.02      0.01    -0.03     0.00 1.00    30598    34136
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kn_model_sex)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kn_model_sex)

3 BCLSM Positive Emotion

Kp_model_neuro3 <- brm(bf(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .95), inits = 0.1,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro3"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 29363) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.55      0.03     0.49     0.61 1.00     1197     2673
## sd(sigma_Intercept)     0.34      0.02     0.30     0.38 1.00     1689     3592
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           4.31      0.16     4.00     4.63 1.01      595     1224
## sigma_Intercept    -0.62      0.10    -0.82    -0.43 1.00     1137     2010
## neuro_t            -0.26      0.05    -0.36    -0.16 1.01      621     1299
## sigma_neuro_t       0.03      0.03    -0.04     0.09 1.00     1166     2022
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kp_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kp_model_neuro3)

prior_summary(Kp_model_neuro3)
##                   prior     class      coef     group resp  dpar nlpar lb ub       source
##                  (flat)         b                                                 default
##                  (flat)         b   neuro_t                                  (vectorized)
##                  (flat)         b                          sigma                  default
##                  (flat)         b   neuro_t                sigma             (vectorized)
##  student_t(3, 3.6, 2.5) Intercept                                                 default
##    student_t(3, 0, 2.5) Intercept                          sigma                  default
##    student_t(3, 0, 2.5)        sd                                       0         default
##    student_t(3, 0, 2.5)        sd                          sigma        0         default
##    student_t(3, 0, 2.5)        sd           person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id                   0    (vectorized)
##    student_t(3, 0, 2.5)        sd           person_id      sigma        0    (vectorized)
##    student_t(3, 0, 2.5)        sd Intercept person_id      sigma        0    (vectorized)

3.1 Model comparison

3.1.1 scale vs. no scale parameter

Kp_model_neuro2 <- brm(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id), data = dataset,
                    iter = 7000, warmup = 2000, chains = 4,
                   control = list(adapt_delta = .95), inits = 0.1,
                    file = paste("models/", params$file, "Kp_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id) 
##    Data: dataset (Number of observations: 29363) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.53      0.03     0.48     0.59 1.01      734     1753
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     4.28      0.15     3.98     4.58 1.01      440     1142
## neuro_t      -0.25      0.05    -0.35    -0.15 1.00      431     1140
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.64      0.00     0.63     0.64 1.00    19639    13522
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelAp <- Kp_model_neuro2
modelBp <- Kp_model_neuro3


modelAp <- add_criterion(modelAp, "loo")
modelBp <- add_criterion(modelBp, "loo")

looP <- loo_compare(modelAp,modelBp, criterion = "loo")

looP <- as.data.frame(looP)

looP$Dataset <- params$file
looP <- tibble::rownames_to_column(looP, "model")
library("writexl")
write_xlsx(looP,paste0("looP", params$file, ".xlsx"))

kable(looP)
model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelBp 0.000 0.0000 -25708.47 169.6149 459.8899 16.318112 51416.93 339.2298 Dataset 4 public.csv
modelAp -2791.055 95.9131 -28499.52 170.9698 176.8593 2.117323 56999.04 341.9396 Dataset 4 public.csv

3.1.2 censoring vs. no censoring

Kp_model_neuro4 <- brm(bf(posemo_full_m ~ neuro_t + (1|person_id),
                       sigma ~ neuro_t + (1|person_id)), data = dataset,
                       chains = 4,
                       control = list(adapt_delta = .9999), inits = 0,
                       iter = 7000, warmup = 2000,
                    file = paste("models/", params$file, "Kp_model_neuro4"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro4)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m ~ neuro_t + (1 | person_id) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 29363) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.50      0.03     0.45     0.56 1.00      683     1424
## sd(sigma_Intercept)     0.32      0.02     0.28     0.35 1.00     1197     3130
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           4.25      0.14     3.98     4.52 1.01      462      998
## sigma_Intercept    -0.72      0.09    -0.90    -0.54 1.00      842     1923
## neuro_t            -0.24      0.05    -0.33    -0.16 1.00      488     1204
## sigma_neuro_t       0.05      0.03    -0.01     0.11 1.01      738     1786
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
#pa

results_Cens[1, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_Cens[1, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")


results_Cens[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro4, "b_neuro_t")
results_Cens[2, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "posemo_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_Intercept")

3.1.3 BCLSM vs. model C (two-part model)

Kp_model_neuro_jinxed <- brm(bf(posemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
     sigma ~ neuro_t + (1|person_id)), data = dataset,
  iter = 5000, warmup = 2000,  chains = 4,
  control = list(adapt_delta = .99), init = 0.1,
  file = paste("models/", params$file, "Kp_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro_jinxed)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: posemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q)) 
##          sigma ~ neuro_t + (1 | person_id)
##    Data: dataset (Number of observations: 29363) 
##   Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##          total post-warmup draws = 12000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.12,2.62))     0.42      0.04     0.34     0.51 1.01      620     1373
## sd(Intercept:neuro_Q[2.62,3.12))     0.47      0.05     0.38     0.59 1.00      640     1449
## sd(Intercept:neuro_Q[3.12,3.62))     0.45      0.06     0.36     0.58 1.01      850     1430
## sd(Intercept:neuro_Q[3.62,4.88])     0.55      0.06     0.45     0.69 1.01      696     1328
## sd(sigma_Intercept)                  0.31      0.02     0.28     0.35 1.00      813     1538
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           3.99      0.13     3.74     4.26 1.00      310      580
## sigma_Intercept    -0.66      0.10    -0.84    -0.47 1.01      439     1010
## neuro_t            -0.20      0.05    -0.29    -0.11 1.01      277      602
## sigma_neuro_t       0.03      0.03    -0.03     0.09 1.01      441     1065
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kp_model_neuro3
modelC <- Kp_model_neuro_jinxed

modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")

loo_cP <- loo_compare(modelB,modelC, criterion = "loo")
## Warning: Not all models have the same y variable. ('yhash' attributes do not match)
loo_cP <- as.data.frame(loo_cP)

loo_cP$Dataset <- params$file
#loo_cP <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_cP,paste0("loo_cP", params$file, ".xlsx"))

kable(loo_cP)
elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic Dataset
modelC 0.000 0.00000 -22958.28 160.8128 442.2849 18.32649 45916.56 321.6255 Dataset 4 public.csv
modelB -2750.183 78.01855 -25708.47 169.6149 459.8899 16.31811 51416.93 339.2298 Dataset 4 public.csv
extract_param <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_K <- data.frame(matrix(nrow = 7, 
                             ncol = 8+1)) 
names(results_K) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma", "b_neg_sigma_sex",
                    "posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma", "b_pos_sigma_sex"
                    )

results_K$model <- c("model1", "model2", "model3",
                  "RSD", "RSD_weight", "SD", "gender")

#NA

results_K[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro2, "b_neuro_t")
results_K[2, "negemo_sigma"] <- extract_param(Kn_model_neuro2, "sigma")

results_K[3, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_K[3, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_K[3, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")

#gender 

results_K[7, "negemo_b_neuro"] <- extract_param(Kn_model_sex, "b_neuro_t")
results_K[7, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_sex, "b_sigma_neuro_t")
results_K[7, "negemo_sigma"] <- extract_param(Kn_model_sex, "b_sigma_Intercept")
results_K[7, "b_neg_sigma_sex"] <- extract_param(Kn_model_sex, "b_sigma_gender1")

#pa
results_K[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro2, "b_neuro_t")
results_K[2, "posemo_sigma"] <- extract_param(Kp_model_neuro2, "sigma")

results_K[3, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_K[3, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_K[3, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")

4 RVI (Relative Variability Index)

data_w <- unique(dataset[,2:5])

4.1 Unweighted RVI

data_w$RSD_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_NA[i] <- relativeSD(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
    }

range(data_w$RSD_NA, na.rm = T)
## [1] 0.1220675 0.6996578
mean(data_w$RSD_NA, na.rm = T)
## [1] 0.359781
sd(data_w$RSD_NA, na.rm = T)
## [1] 0.1194503
data_w$logrsd_n <- log(data_w$RSD_NA)

#plot(data_w$logrsd_n)

m_rvi_na <- brm(logrsd_n ~ neuro_t, data= data_w,
                file = paste("models/", params$file, "Kn_model_logrsd_uw"))
print(m_rvi_na)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n ~ neuro_t 
##    Data: data_w (Number of observations: 176) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.01      0.10    -1.20    -0.82 1.00     4458     3209
## neuro_t      -0.02      0.03    -0.09     0.04 1.00     4361     3402
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.35      0.02     0.31     0.39 1.00     4415     2944
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,3] <- extract_param(m_rvi_na, "b_neuro_t")



data_w$RSD_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$RSD_PA[i] <- relativeSD(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                     1, 5)
}

range(data_w$RSD_PA)
## [1] 0.1168063 0.6621192
data_w$logrsd_p <- log(data_w$RSD_PA)


m_rvi_pa <- brm(logrsd_p ~ neuro_t, data= data_w,
                 file = paste("models/", params$file, "Kp_model_logrsd_uw"))
print(m_rvi_pa)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p ~ neuro_t 
##    Data: data_w (Number of observations: 176) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.17      0.10    -1.37    -0.96 1.00     3842     2834
## neuro_t      -0.00      0.03    -0.07     0.06 1.00     3643     3037
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.35      0.02     0.31     0.39 1.00     3782     2908
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,6] <- extract_param(m_rvi_pa, "b_neuro_t")

4.2 Weighted RVI

data_w$mean_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_NA[i] <- mean(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$mean_NA)
## [1] 1.886241
sd(data_w$mean_NA)
## [1] 0.5395514
data_w$mean_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$mean_PA[i] <- mean(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
}

mean(data_w$mean_PA)
## [1] 3.523999
sd(data_w$mean_PA)
## [1] 0.5316833
data_w$weight_NA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_NA[i])) {
      data_w$weight_NA[i] <- maximumSD(data_w$mean_NA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_NA[i] <- data_w$weight_NA[i]^2
    }
  }

mean(data_w$weight_NA)
## [1] 2.468617
sd(data_w$weight_NA)
## [1] 1.030032
range(data_w$weight_NA)
## [1] 0.1501318 4.0170929
m_rvi_na_w <- brm(logrsd_n| weights(weight_NA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logrsd"))
print(m_rvi_na_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_n | weights(weight_NA) ~ neuro_t 
##    Data: data_w (Number of observations: 176) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.15      0.07    -1.28    -1.01 1.00     3301     2892
## neuro_t       0.01      0.02    -0.03     0.05 1.00     3663     2690
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.34      0.01     0.32     0.36 1.00     3930     2917
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,3] <- extract_param(m_rvi_na_w, "b_neuro_t")



data_w$weight_PA <- NA
for (i in 1:nrow(data_w)) {
    if (!is.na(data_w$mean_PA[i])) {
      data_w$weight_PA[i] <- maximumSD(data_w$mean_PA[i], # Mittelwert
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]])) 
      ) 
      # W as reported in paper
      data_w$weight_PA[i] <- data_w$weight_PA[i]^2
    }
  }

m_rvi_pa_w <- brm(logrsd_p| weights(weight_PA) ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logrsd"))
print(m_rvi_pa_w)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_p | weights(weight_PA) ~ neuro_t 
##    Data: data_w (Number of observations: 176) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.26      0.05    -1.36    -1.14 1.00     3825     2827
## neuro_t       0.02      0.02    -0.02     0.05 1.00     4104     3027
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.34      0.01     0.32     0.36 1.00     5076     2752
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,6] <- extract_param(m_rvi_pa_w, "b_neuro_t")

5 SD

data_w$sd_NA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_NA[i] <- sd(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

data_w$sd_PA <- NA
for (i in 1:nrow(data_w)) {
      data_w$sd_PA[i] <- sd(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
                                   na.rm = T)
    }

mean(data_w$sd_NA)
## [1] 0.5358045
mean(data_w$sd_PA)
## [1] 0.5920927
data_w$sd_PA[data_w$sd_PA == 0] <- NA   
data_w$sd_NA[data_w$sd_NA == 0] <- NA   


data_w$logsd_NA <- log(data_w$sd_NA)
data_w$logsd_PA <- log(data_w$sd_PA)
m_sd_na <- brm(logsd_NA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kn_model_logsd"))
m_sd_na
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_NA ~ neuro_t 
##    Data: data_w (Number of observations: 176) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.98      0.11    -1.20    -0.76 1.00     3518     2502
## neuro_t       0.10      0.04     0.03     0.17 1.00     3821     2288
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.38      0.02     0.34     0.43 1.00     3632     2837
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,3] <- extract_param(m_sd_na, "b_neuro_t")

m_sd_pa <- brm(logsd_PA ~ neuro_t, data= data_w,
                    file = paste("models/", params$file, "Kp_model_logsd"))
m_sd_pa
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_PA ~ neuro_t 
##    Data: data_w (Number of observations: 176) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.72      0.09    -0.90    -0.54 1.00     3948     2984
## neuro_t       0.05      0.03    -0.01     0.11 1.00     3883     2882
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.32      0.02     0.29     0.36 1.00     3684     2806
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,6] <- extract_param(m_sd_pa, "b_neuro_t")
library("writexl")

write_xlsx(results_K,paste0("", params$file, ".xlsx"))

6 Incremental Validity of SD

na_noneurot <- brm(bf(negemo_full_m | cens(Acens) ~  (1|person_id),
                       sigma ~ (1|person_id)), data = dataset,
                       iter = 7000, warmup = 2000,chains = 4,
                      control = list(adapt_delta = .99), init = 0.1,
                   file = "na_noneurot")
## Warning: Rows containing NAs were excluded from the model.
print(na_noneurot)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: negemo_full_m | cens(Acens) ~ (1 | person_id) 
##          sigma ~ (1 | person_id)
##    Data: dataset (Number of observations: 29352) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~person_id (Number of levels: 176) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.64      0.04     0.57     0.71 1.01      830     1655
## sd(sigma_Intercept)     0.40      0.02     0.36     0.44 1.00     1357     2811
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.81      0.05     1.71     1.90 1.02      277      580
## sigma_Intercept    -0.57      0.03    -0.63    -0.51 1.01      561     1352
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
rans <- coef(na_noneurot, summary = T)


rans_i <- as.data.frame(rans$person_id[,,"Intercept"]) %>% tibble::rownames_to_column("person_id")
rans_s <- as.data.frame(rans$person_id[,,"sigma_Intercept"]) %>% tibble::rownames_to_column("person_id")
nrow(rans_s)
## [1] 176
nrow(rans_i)
## [1] 176
nrow(data_w)
## [1] 176
dat <- merge(rans_s, rans_i, all = T, by= "person_id")
dat <- merge(dat, data_w, all = T, by= "person_id")

names(dat)[2] <- "Est.SD"
names(dat)[6] <- "Est.M"

fit1 <- lm(neuro_t ~ Est.SD + Est.M , data=dat)
summary(fit1)
## 
## Call:
## lm(formula = neuro_t ~ Est.SD + Est.M, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.52203 -0.52534  0.08667  0.49341  1.91113 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.15189    0.18397  11.697  < 2e-16 ***
## Est.SD       0.19742    0.14428   1.368    0.173    
## Est.M        0.50787    0.08883   5.717 4.66e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7391 on 173 degrees of freedom
## Multiple R-squared:  0.1625, Adjusted R-squared:  0.1529 
## F-statistic: 16.79 on 2 and 173 DF,  p-value: 2.169e-07
fit1.2 <- lm(neuro_t ~  Est.M , data=dat)
summary(fit1.2)
## 
## Call:
## lm(formula = neuro_t ~ Est.M, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.53258 -0.55315  0.06906  0.54782  1.95216 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.05573    0.17045  12.061  < 2e-16 ***
## Est.M        0.49882    0.08881   5.617 7.58e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7409 on 174 degrees of freedom
## Multiple R-squared:  0.1535, Adjusted R-squared:  0.1486 
## F-statistic: 31.55 on 1 and 174 DF,  p-value: 7.581e-08
aov <- anova(fit1.2, fit1)
aov
## Analysis of Variance Table
## 
## Model 1: neuro_t ~ Est.M
## Model 2: neuro_t ~ Est.SD + Est.M
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    174 95.527                           
## 2    173 94.504  1    1.0228 1.8724  0.173
summary(fit1)$r.squared-summary(fit1.2)$r.squared
## [1] 0.009063684
results_SDin <- data.frame(matrix(nrow = 1, ncol = 9))
names(results_SDin) <- c("Dataset","b_SD","Err.SD","p(b_SD)","b_M","Err.M","p(b_M)","ΔR²", "p")

results_SDin$Dataset <- params$file

results_SDin$`ΔR²` <- summary(fit1)$r.squared-summary(fit1.2)$r.squared
results_SDin$`p` <- aov$`Pr(>F)`[2]
results_SDin$Err.SD <- summary(fit1)$coefficients[2,2]
results_SDin$b_SD <- fit1$coefficients[2]

results_SDin$`p(b_SD)` <- summary(fit1)$coefficients[2,4]
results_SDin$b_M <- fit1$coefficients[3]
results_SDin$`p(b_M)` <- summary(fit1)$coefficients[3,4]
results_SDin$Err.M <- summary(fit1)$coefficients[3,2]

  
library("writexl")
write_xlsx(results_SDin,paste0("SD", params$file, ".xlsx"))