Data Preparation
dataset <- read.csv(file = params$file, header = T, sep = ",")
#run parallel cores
options(mc.cores = 8, brms.backend = "cmdstanr", brms.file_refit = "on_change")
#install.packages("loo")
#remotes::install_github("stan-dev/loo")
library(remotes)
library(loo)
library(psych)
library(relativeVariability)
library(brms)
library(cmdstanr)
library(data.table)
library(ggplot2)
library(dplyr)
library(haven)
#library(rstanarm)
library(knitr)
library(rstan)
library(shinystan)
Rescale Data
dataset$negemo_full_m <- (dataset$negemo_full_m -1)*(4/6)+1
dataset$posemo_full_m <- (dataset$posemo_full_m -1)*(4/6)+1
dataset$neuro_t <- (dataset$neuro_t -1)*(4/6)+1
hist(dataset$negemo_full_m)

Censoring Data
range(dataset$negemo_full_m, na.rm = T)
## [1] 1.000000 4.652525
range(dataset$posemo_full_m, na.rm = T)
## [1] 1 5
sd(dataset$negemo_full_m, na.rm = T)
## [1] 0.6319208
mean(dataset$negemo_full_m, na.rm = T)
## [1] 1.671962
sd(dataset$posemo_full_m, na.rm = T)
## [1] 0.8916097
mean(dataset$posemo_full_m, na.rm = T)
## [1] 3.268945
sd(dataset$neuro_t, na.rm = T)
## [1] 1.010126
mean(dataset$neuro_t, na.rm = T)
## [1] 2.578813
qplot(dataset$negemo_full_, binwidth = .1)
## Warning: Removed 633 rows containing non-finite values (`stat_bin()`).

qplot(dataset$posemo_full_, binwidth = .1)
## Warning: Removed 636 rows containing non-finite values (`stat_bin()`).

dataset$Acens <- case_when(dataset$negemo_full_m == 1 ~ "left",
dataset$negemo_full_m == 5 ~ "right",
TRUE ~ "none")
table(dataset$Acens)
##
## left none
## 407 5990
dataset$Acens_p <- case_when(dataset$posemo_full_m == 1 ~ "left",
dataset$posemo_full_m == 5 ~ "right",
TRUE ~ "none")
table(dataset$Acens_p)
##
## left none right
## 10 6320 67
BCLSM Negative Emotion
Kn_model_neuro3 <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id),
sigma ~ neuro_t+ (1|person_id)), data = dataset,
iter = 7000, warmup = 2000, chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = paste("models/", params$file, "Kn_model_neuro3"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro3)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5764)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.43 0.03 0.37 0.50 1.00 2025 4358
## sd(sigma_Intercept) 0.41 0.03 0.35 0.48 1.00 2396 4159
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.03 0.12 0.78 1.27 1.00 848 1812
## sigma_Intercept -1.35 0.12 -1.59 -1.11 1.00 1659 3366
## neuro_t 0.23 0.04 0.15 0.32 1.00 1097 2287
## sigma_neuro_t 0.17 0.04 0.09 0.25 1.00 1709 3611
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(Kn_model_neuro3)


pp_check(Kn_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

prior_summary(Kn_model_neuro3)
## prior class coef group resp dpar nlpar lb ub source
## (flat) b default
## (flat) b neuro_t (vectorized)
## (flat) b sigma default
## (flat) b neuro_t sigma (vectorized)
## student_t(3, 1.5, 2.5) Intercept default
## student_t(3, 0, 2.5) Intercept sigma default
## student_t(3, 0, 2.5) sd 0 default
## student_t(3, 0, 2.5) sd sigma 0 default
## student_t(3, 0, 2.5) sd person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd person_id sigma 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id sigma 0 (vectorized)
Model comparison
scale vs. no scale parameter
Kn_model_neuro2 <- brm(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id), data = dataset,
iter = 6000, warmup = 2000, chains = 4,
control = list(adapt_delta = .98), inits = 0.1 ,
file = paste("models/", params$file, "Kn_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro2)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5764)
## Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
## total post-warmup draws = 16000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.43 0.03 0.37 0.50 1.00 1286 2052
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.03 0.12 0.79 1.26 1.00 816 1989
## neuro_t 0.24 0.04 0.15 0.32 1.00 835 2161
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.47 0.00 0.46 0.48 1.00 19422 11286
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelA <- Kn_model_neuro2
modelB <- Kn_model_neuro3
modelA <- add_criterion(modelA, "loo")
modelB <- add_criterion(modelB, "loo")
loo <- loo_compare(modelA,modelB, criterion = "loo")
loo <- as.data.frame(loo)
loo$Dataset <- params$file
loo <- tibble::rownames_to_column(loo, "model")
library("writexl")
write_xlsx(loo,paste0("loo", params$file, ".xlsx"))
kable(loo)
modelB |
0.0000 |
0.00000 |
-3163.079 |
95.28768 |
305.00646 |
24.959176 |
6326.158 |
190.5754 |
Dataset 6 public.csv |
modelA |
-730.1555 |
55.35172 |
-3893.235 |
79.40007 |
94.59971 |
2.777749 |
7786.469 |
158.8001 |
Dataset 6 public.csv |
censoring vs. no censoring
Kn_model_neuro4 <- brm(bf(negemo_full_m ~ neuro_t + (1|person_id),
sigma ~ neuro_t+ (1|person_id)), data = dataset,
iter = 7000, warmup = 2000, chains = 4,
control = list(adapt_delta = .9999), init = 0,
file = paste("models/", params$file, "Kn_model_neuro4"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro4)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5764)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.39 0.03 0.34 0.45 1.01 1346 2576
## sd(sigma_Intercept) 0.42 0.03 0.36 0.48 1.00 1878 3537
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.11 0.11 0.91 1.33 1.01 676 1618
## sigma_Intercept -1.55 0.12 -1.78 -1.31 1.00 1280 2283
## neuro_t 0.21 0.04 0.14 0.29 1.01 723 1623
## sigma_neuro_t 0.22 0.04 0.14 0.30 1.00 1486 2413
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
extract_param <- function(model, parameter) {
ci <- posterior_summary(model, variable = parameter)
est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
est
}
results_Cens <- data.frame(matrix(nrow = 2,
ncol = 6+1))
names(results_Cens) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma",
"posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma"
)
results_Cens$model <- c("modelCensoring", "modelnoCensoring")
#NA
results_Cens[1, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_Cens[1, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")
results_Cens[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro4, "b_neuro_t")
results_Cens[2, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "negemo_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_Intercept")
BCLSM vs. model C (two-part model)
dataset <- dataset %>% left_join(dataset %>% distinct(person_id, neuro_t) %>% mutate(neuro_Q =Hmisc::cut2(neuro_t, g = 4)), by = c("person_id", "neuro_t"))
Kn_model_neuro_jinxed <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
sigma ~ neuro_t + (1|person_id)), data = dataset,
iter = 5000, warmup = 2000, chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = paste("models/", params$file, "Kn_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro_jinxed)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q))
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5764)
## Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
## total post-warmup draws = 12000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.00)) 0.41 0.06 0.30 0.55 1.00 1800 3110
## sd(Intercept:neuro_Q[2.00,2.67)) 0.44 0.07 0.33 0.61 1.00 1853 3521
## sd(Intercept:neuro_Q[2.67,3.67)) 0.46 0.07 0.35 0.63 1.00 1654 3396
## sd(Intercept:neuro_Q[3.67,5.00]) 0.49 0.08 0.35 0.68 1.00 2014 3595
## sd(sigma_Intercept) 0.41 0.03 0.35 0.48 1.00 1925 3517
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.04 0.12 0.80 1.28 1.00 683 1427
## sigma_Intercept -1.35 0.12 -1.58 -1.11 1.00 1189 2582
## neuro_t 0.23 0.05 0.14 0.32 1.00 773 1641
## sigma_neuro_t 0.17 0.04 0.08 0.25 1.00 1218 2167
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kn_model_neuro3
modelC <- Kn_model_neuro_jinxed
modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")
loo_c <- loo_compare(modelB,modelC, criterion = "loo")
loo_c <- as.data.frame(loo_c)
loo_c$Dataset <- params$file
loo_c <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_c,paste0("loo_c", params$file, ".xlsx"))
kable(loo_c)
modelC |
0.000000 |
0.000000 |
-3161.927 |
94.98484 |
304.0633 |
24.42168 |
6323.854 |
189.9697 |
Dataset 6 public.csv |
modelB |
-1.151933 |
1.143763 |
-3163.079 |
95.28768 |
305.0065 |
24.95918 |
6326.158 |
190.5754 |
Dataset 6 public.csv |
control for gender
dataset$gender <- as.factor(dataset$gender)
Kn_model_sex <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + gender + (1|person_id),
sigma ~ neuro_t + gender), data = dataset,
iter = 9000, warmup = 2000, chains = 8,
control = list(adapt_delta = .99), inits = 0.1,
file = paste("models/", params$file, "Kn_model_sex"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_sex)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + gender + (1 | person_id)
## sigma ~ neuro_t + gender
## Data: dataset (Number of observations: 5764)
## Draws: 8 chains, each with iter = 9000; warmup = 2000; thin = 1;
## total post-warmup draws = 56000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.42 0.03 0.37 0.49 1.00 4055 7461
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.01 0.14 0.73 1.29 1.01 2190 4759
## sigma_Intercept -1.19 0.04 -1.26 -1.12 1.00 31931 37106
## neuro_t 0.24 0.05 0.15 0.33 1.00 2526 5703
## gender1 0.05 0.10 -0.14 0.24 1.00 1716 4205
## sigma_neuro_t 0.16 0.01 0.14 0.18 1.00 35928 39204
## sigma_gender1 -0.02 0.02 -0.07 0.02 1.00 36008 40256
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kn_model_sex)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kn_model_sex)


BCLSM Positive Emotion
Kp_model_neuro3 <- brm(bf(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id),
sigma ~ neuro_t + (1|person_id)), data = dataset,
chains = 4,
control = list(adapt_delta = .95), inits = 0.1,
iter = 7000, warmup = 2000,
file = paste("models/", params$file, "Kp_model_neuro3"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro3)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5761)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.48 0.04 0.42 0.57 1.00 3204 6454
## sd(sigma_Intercept) 0.25 0.02 0.21 0.30 1.00 5764 11361
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.95 0.14 3.68 4.23 1.00 1934 3867
## sigma_Intercept -0.53 0.08 -0.68 -0.38 1.00 5340 9039
## neuro_t -0.26 0.05 -0.36 -0.16 1.00 2247 4292
## sigma_neuro_t 0.06 0.03 0.01 0.12 1.00 5398 9084
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kp_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kp_model_neuro3)


prior_summary(Kp_model_neuro3)
## prior class coef group resp dpar nlpar lb ub source
## (flat) b default
## (flat) b neuro_t (vectorized)
## (flat) b sigma default
## (flat) b neuro_t sigma (vectorized)
## student_t(3, 3.4, 2.5) Intercept default
## student_t(3, 0, 2.5) Intercept sigma default
## student_t(3, 0, 2.5) sd 0 default
## student_t(3, 0, 2.5) sd sigma 0 default
## student_t(3, 0, 2.5) sd person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd person_id sigma 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id sigma 0 (vectorized)
Model comparison
scale vs. no scale parameter
Kp_model_neuro2 <- brm(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id), data = dataset,
iter = 7000, warmup = 2000, chains = 4,
control = list(adapt_delta = .95), inits = 0.1,
file = paste("models/", params$file, "Kp_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro2)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5761)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.48 0.04 0.41 0.55 1.00 2231 4681
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.94 0.14 3.67 4.21 1.00 1263 2739
## neuro_t -0.26 0.05 -0.35 -0.16 1.00 1446 2876
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.73 0.01 0.72 0.74 1.00 30027 14689
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelAp <- Kp_model_neuro2
modelBp <- Kp_model_neuro3
modelAp <- add_criterion(modelAp, "loo")
modelBp <- add_criterion(modelBp, "loo")
looP <- loo_compare(modelAp,modelBp, criterion = "loo")
looP <- as.data.frame(looP)
looP$Dataset <- params$file
looP <- tibble::rownames_to_column(looP, "model")
library("writexl")
write_xlsx(looP,paste0("looP", params$file, ".xlsx"))
kable(looP)
modelBp |
0.0000 |
0.00000 |
-6107.825 |
59.11643 |
178.28355 |
7.305849 |
12215.65 |
118.2329 |
Dataset 6 public.csv |
modelAp |
-298.1903 |
25.82768 |
-6406.015 |
56.32477 |
92.91741 |
1.821327 |
12812.03 |
112.6495 |
Dataset 6 public.csv |
censoring vs. no censoring
Kp_model_neuro4 <- brm(bf(posemo_full_m ~ neuro_t + (1|person_id),
sigma ~ neuro_t + (1|person_id)), data = dataset,
chains = 4,
control = list(adapt_delta = .9999), inits = 0,
iter = 7000, warmup = 2000,
file = paste("models/", params$file, "Kp_model_neuro4"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro4)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: posemo_full_m ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5761)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.46 0.04 0.40 0.54 1.00 2241 4335
## sd(sigma_Intercept) 0.24 0.02 0.21 0.29 1.00 4621 7862
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.94 0.13 3.69 4.21 1.00 1239 2536
## sigma_Intercept -0.56 0.07 -0.70 -0.41 1.00 3159 5516
## neuro_t -0.26 0.05 -0.35 -0.16 1.00 1487 2600
## sigma_neuro_t 0.07 0.03 0.01 0.12 1.00 3097 5369
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
#pa
results_Cens[1, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_Cens[1, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")
results_Cens[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro4, "b_neuro_t")
results_Cens[2, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "posemo_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_Intercept")
BCLSM vs. model C (two-part model)
Kp_model_neuro_jinxed <- brm(bf(posemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
sigma ~ neuro_t + (1|person_id)), data = dataset,
iter = 5000, warmup = 2000, chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = paste("models/", params$file, "Kp_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro_jinxed)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: posemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q))
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 5761)
## Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
## total post-warmup draws = 12000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.00)) 0.51 0.08 0.38 0.69 1.00 2297 4202
## sd(Intercept:neuro_Q[2.00,2.67)) 0.50 0.08 0.37 0.69 1.00 1940 3468
## sd(Intercept:neuro_Q[2.67,3.67)) 0.43 0.07 0.32 0.59 1.00 1498 3366
## sd(Intercept:neuro_Q[3.67,5.00]) 0.55 0.10 0.40 0.78 1.00 2098 4305
## sd(sigma_Intercept) 0.25 0.02 0.21 0.29 1.00 3090 5453
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.75 0.14 3.47 4.04 1.01 826 1981
## sigma_Intercept -0.50 0.07 -0.65 -0.35 1.00 2838 4587
## neuro_t -0.21 0.05 -0.32 -0.12 1.01 1019 2135
## sigma_neuro_t 0.05 0.03 -0.00 0.10 1.00 2869 4817
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kp_model_neuro3
modelC <- Kp_model_neuro_jinxed
modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")
loo_cP <- loo_compare(modelB,modelC, criterion = "loo")
## Warning: Not all models have the same y variable. ('yhash' attributes do not match)
loo_cP <- as.data.frame(loo_cP)
loo_cP$Dataset <- params$file
#loo_cP <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_cP,paste0("loo_cP", params$file, ".xlsx"))
kable(loo_cP)
modelC |
0.0000 |
0.00000 |
-5856.502 |
57.87046 |
172.6994 |
6.848110 |
11713.00 |
115.7409 |
Dataset 6 public.csv |
modelB |
-251.3231 |
23.64782 |
-6107.825 |
59.11643 |
178.2835 |
7.305849 |
12215.65 |
118.2329 |
Dataset 6 public.csv |
extract_param <- function(model, parameter) {
ci <- posterior_summary(model, variable = parameter)
est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
est
}
results_K <- data.frame(matrix(nrow = 7,
ncol = 8+1))
names(results_K) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma", "b_neg_sigma_sex",
"posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma", "b_pos_sigma_sex"
)
results_K$model <- c("model1", "model2", "model3",
"RSD", "RSD_weight", "SD", "gender")
#NA
results_K[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro2, "b_neuro_t")
results_K[2, "negemo_sigma"] <- extract_param(Kn_model_neuro2, "sigma")
results_K[3, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_K[3, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_K[3, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")
#gender
results_K[7, "negemo_b_neuro"] <- extract_param(Kn_model_sex, "b_neuro_t")
results_K[7, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_sex, "b_sigma_neuro_t")
results_K[7, "negemo_sigma"] <- extract_param(Kn_model_sex, "b_sigma_Intercept")
results_K[7, "b_neg_sigma_sex"] <- extract_param(Kn_model_sex, "b_sigma_gender1")
#pa
results_K[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro2, "b_neuro_t")
results_K[2, "posemo_sigma"] <- extract_param(Kp_model_neuro2, "sigma")
results_K[3, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_K[3, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_K[3, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")
RVI (Relative Variability Index)
data_w <- unique(dataset[,2:5])
Unweighted RVI
data_w$RSD_NA <- NA
for (i in 1:nrow(data_w)) {
data_w$RSD_NA[i] <- relativeSD(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
1, 5)
}
range(data_w$RSD_NA, na.rm = T)
## [1] 0.1172145 0.5293149
mean(data_w$RSD_NA, na.rm = T)
## [1] 0.2994689
sd(data_w$RSD_NA, na.rm = T)
## [1] 0.08918848
data_w$logrsd_n <- log(data_w$RSD_NA)
#plot(data_w$logrsd_n)
m_rvi_na <- brm(logrsd_n ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kn_model_logrsd_uw"))
print(m_rvi_na)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_n ~ neuro_t
## Data: data_w (Number of observations: 96)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.43 0.09 -1.59 -1.26 1.00 3954 3034
## neuro_t 0.07 0.03 0.01 0.13 1.00 3992 3095
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.31 0.02 0.27 0.36 1.00 4010 3092
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,3] <- extract_param(m_rvi_na, "b_neuro_t")
data_w$RSD_PA <- NA
for (i in 1:nrow(data_w)) {
data_w$RSD_PA[i] <- relativeSD(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
1, 5)
}
range(data_w$RSD_PA)
## [1] 0.1754973 0.6074962
data_w$logrsd_p <- log(data_w$RSD_PA)
m_rvi_pa <- brm(logrsd_p ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kp_model_logrsd_uw"))
print(m_rvi_pa)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_p ~ neuro_t
## Data: data_w (Number of observations: 96)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.18 0.07 -1.32 -1.04 1.00 4046 2540
## neuro_t 0.06 0.03 0.01 0.11 1.00 3954 2621
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.25 0.02 0.22 0.29 1.00 3939 2982
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,6] <- extract_param(m_rvi_pa, "b_neuro_t")
Weighted RVI
data_w$mean_NA <- NA
for (i in 1:nrow(data_w)) {
data_w$mean_NA[i] <- mean(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
mean(data_w$mean_NA)
## [1] 1.667595
sd(data_w$mean_NA)
## [1] 0.4472842
data_w$mean_PA <- NA
for (i in 1:nrow(data_w)) {
data_w$mean_PA[i] <- mean(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
mean(data_w$mean_PA)
## [1] 3.275097
sd(data_w$mean_PA)
## [1] 0.5301401
data_w$weight_NA <- NA
for (i in 1:nrow(data_w)) {
if (!is.na(data_w$mean_NA[i])) {
data_w$weight_NA[i] <- maximumSD(data_w$mean_NA[i], # Mittelwert
1, # Minimum
5, # Maximum
sum(!is.na(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]]))
)
# W as reported in paper
data_w$weight_NA[i] <- data_w$weight_NA[i]^2
}
}
mean(data_w$weight_NA)
## [1] 2.012692
sd(data_w$weight_NA)
## [1] 1.022554
range(data_w$weight_NA)
## [1] 0.2672181 3.9843597
m_rvi_na_w <- brm(logrsd_n| weights(weight_NA) ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kn_model_logrsd"))
print(m_rvi_na_w)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_n | weights(weight_NA) ~ neuro_t
## Data: data_w (Number of observations: 96)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.48 0.06 -1.60 -1.37 1.00 3240 3004
## neuro_t 0.09 0.02 0.05 0.13 1.00 3623 3333
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.28 0.01 0.25 0.31 1.00 3708 2723
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,3] <- extract_param(m_rvi_na_w, "b_neuro_t")
data_w$weight_PA <- NA
for (i in 1:nrow(data_w)) {
if (!is.na(data_w$mean_PA[i])) {
data_w$weight_PA[i] <- maximumSD(data_w$mean_PA[i], # Mittelwert
1, # Minimum
5, # Maximum
sum(!is.na(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]]))
)
# W as reported in paper
data_w$weight_PA[i] <- data_w$weight_PA[i]^2
}
}
m_rvi_pa_w <- brm(logrsd_p| weights(weight_PA) ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kp_model_logrsd"))
print(m_rvi_pa_w)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_p | weights(weight_PA) ~ neuro_t
## Data: data_w (Number of observations: 96)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.19 0.04 -1.26 -1.11 1.00 3918 2208
## neuro_t 0.06 0.01 0.03 0.08 1.00 3996 2403
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.25 0.01 0.23 0.27 1.00 3456 2674
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,6] <- extract_param(m_rvi_pa_w, "b_neuro_t")
SD
data_w$sd_NA <- NA
for (i in 1:nrow(data_w)) {
data_w$sd_NA[i] <- sd(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
data_w$sd_PA <- NA
for (i in 1:nrow(data_w)) {
data_w$sd_PA[i] <- sd(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
mean(data_w$sd_NA)
## [1] 0.4098885
mean(data_w$sd_PA)
## [1] 0.700419
data_w$sd_PA[data_w$sd_PA == 0] <- NA
data_w$sd_NA[data_w$sd_NA == 0] <- NA
data_w$logsd_NA <- log(data_w$sd_NA)
data_w$logsd_PA <- log(data_w$sd_PA)
m_sd_na <- brm(logsd_NA ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kn_model_logsd"))
m_sd_na
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logsd_NA ~ neuro_t
## Data: data_w (Number of observations: 96)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.56 0.12 -1.81 -1.33 1.00 3955 2933
## neuro_t 0.22 0.04 0.13 0.31 1.00 3734 2904
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.43 0.03 0.37 0.49 1.00 3515 2534
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,3] <- extract_param(m_sd_na, "b_neuro_t")
m_sd_pa <- brm(logsd_PA ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kp_model_logsd"))
m_sd_pa
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logsd_PA ~ neuro_t
## Data: data_w (Number of observations: 96)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -0.57 0.07 -0.71 -0.42 1.00 3771 2673
## neuro_t 0.07 0.03 0.02 0.12 1.00 3751 2870
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.26 0.02 0.23 0.30 1.00 3709 3139
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,6] <- extract_param(m_sd_pa, "b_neuro_t")
library("writexl")
write_xlsx(results_K,paste0("", params$file, ".xlsx"))
Incremental Validity of SD
na_noneurot <- brm(bf(negemo_full_m | cens(Acens) ~ (1|person_id),
sigma ~ (1|person_id)), data = dataset,
iter = 7000, warmup = 2000,chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = "na_noneurot")
## Warning: Rows containing NAs were excluded from the model.
print(na_noneurot)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m | cens(Acens) ~ (1 | person_id)
## sigma ~ (1 | person_id)
## Data: dataset (Number of observations: 5764)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 96)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.49 0.04 0.43 0.57 1.00 1423 2600
## sd(sigma_Intercept) 0.44 0.03 0.38 0.52 1.00 2094 4667
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.64 0.05 1.54 1.74 1.01 479 872
## sigma_Intercept -0.91 0.05 -1.00 -0.82 1.00 1096 2019
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
rans <- coef(na_noneurot, summary = T)
rans_i <- as.data.frame(rans$person_id[,,"Intercept"]) %>% tibble::rownames_to_column("person_id")
rans_s <- as.data.frame(rans$person_id[,,"sigma_Intercept"]) %>% tibble::rownames_to_column("person_id")
nrow(rans_s)
## [1] 96
nrow(rans_i)
## [1] 96
nrow(data_w)
## [1] 96
dat <- merge(rans_s, rans_i, all = T, by= "person_id")
dat <- merge(dat, data_w, all = T, by= "person_id")
names(dat)[2] <- "Est.SD"
names(dat)[6] <- "Est.M"
fit1 <- lm(neuro_t ~ Est.SD + Est.M , data=dat)
summary(fit1)
##
## Call:
## lm(formula = neuro_t ~ Est.SD + Est.M, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.03577 -0.63960 -0.09958 0.58689 2.10543
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6381 0.5018 3.265 0.001535 **
## Est.SD 0.4561 0.2410 1.893 0.061501 .
## Est.M 0.8309 0.2132 3.898 0.000183 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8792 on 93 degrees of freedom
## Multiple R-squared: 0.2669, Adjusted R-squared: 0.2511
## F-statistic: 16.93 on 2 and 93 DF, p-value: 5.366e-07
fit1.2 <- lm(neuro_t ~ Est.M , data=dat)
summary(fit1.2)
##
## Call:
## lm(formula = neuro_t ~ Est.M, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9596 -0.6119 -0.0722 0.5382 2.2205
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9029 0.3220 2.804 0.00613 **
## Est.M 1.0263 0.1891 5.429 4.42e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8912 on 94 degrees of freedom
## Multiple R-squared: 0.2387, Adjusted R-squared: 0.2306
## F-statistic: 29.47 on 1 and 94 DF, p-value: 4.423e-07
aov <- anova(fit1.2, fit1)
aov
## Analysis of Variance Table
##
## Model 1: neuro_t ~ Est.M
## Model 2: neuro_t ~ Est.SD + Est.M
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 94 74.651
## 2 93 71.882 1 2.769 3.5825 0.0615 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fit1)$r.squared-summary(fit1.2)$r.squared
## [1] 0.02823951
results_SDin <- data.frame(matrix(nrow = 1, ncol = 9))
names(results_SDin) <- c("Dataset","b_SD","Err.SD","p(b_SD)","b_M","Err.M","p(b_M)","ΔR²", "p")
results_SDin$Dataset <- params$file
results_SDin$`ΔR²` <- summary(fit1)$r.squared-summary(fit1.2)$r.squared
results_SDin$`p` <- aov$`Pr(>F)`[2]
results_SDin$Err.SD <- summary(fit1)$coefficients[2,2]
results_SDin$b_SD <- fit1$coefficients[2]
results_SDin$`p(b_SD)` <- summary(fit1)$coefficients[2,4]
results_SDin$b_M <- fit1$coefficients[3]
results_SDin$`p(b_M)` <- summary(fit1)$coefficients[3,4]
results_SDin$Err.M <- summary(fit1)$coefficients[3,2]
library("writexl")
write_xlsx(results_SDin,paste0("SD", params$file, ".xlsx"))