Data Preparation
dataset <- read.csv(file = params$file, header = T, sep = ",")
#run parallel cores
options(mc.cores = 8, brms.backend = "cmdstanr", brms.file_refit = "on_change")
#install.packages("loo")
#remotes::install_github("stan-dev/loo")
library(remotes)
library(loo)
library(psych)
library(relativeVariability)
library(brms)
library(cmdstanr)
library(data.table)
library(ggplot2)
library(dplyr)
library(haven)
#library(rstanarm)
library(knitr)
library(rstan)
library(shinystan)
Rescale Data
dataset$negemo_full_m <- (dataset$negemo_full_m -1)*(4/6)+1
dataset$posemo_full_m <- (dataset$posemo_full_m -1)*(4/6)+1
dataset$neuro_t <- (dataset$neuro_t -1)*(4/6)+1
hist(dataset$negemo_full_m)

Censoring Data
range(dataset$negemo_full_m, na.rm = T)
## [1] 1.000000 4.874286
range(dataset$posemo_full_m, na.rm = T)
## [1] 1 5
sd(dataset$negemo_full_m, na.rm = T)
## [1] 0.5923036
mean(dataset$negemo_full_m, na.rm = T)
## [1] 1.456426
sd(dataset$posemo_full_m, na.rm = T)
## [1] 0.6237622
mean(dataset$posemo_full_m, na.rm = T)
## [1] 3.055032
sd(dataset$neuro_t, na.rm = T)
## [1] 0.9765511
mean(dataset$neuro_t, na.rm = T)
## [1] 2.735712
qplot(dataset$negemo_full_, binwidth = .1)
## Warning: Removed 1362 rows containing non-finite values (`stat_bin()`).

qplot(dataset$posemo_full_, binwidth = .1)
## Warning: Removed 1351 rows containing non-finite values (`stat_bin()`).

dataset$Acens <- case_when(dataset$negemo_full_m == 1 ~ "left",
dataset$negemo_full_m == 5 ~ "right",
TRUE ~ "none")
table(dataset$Acens)
##
## left none
## 1155 5823
dataset$Acens_p <- case_when(dataset$posemo_full_m == 1 ~ "left",
dataset$posemo_full_m == 5 ~ "right",
TRUE ~ "none")
table(dataset$Acens_p)
##
## left none right
## 4 6960 14
BCLSM Negative Emotion
Kn_model_neuro3 <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id),
sigma ~ neuro_t+ (1|person_id)), data = dataset,
iter = 7000, warmup = 2000, chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = paste("models/", params$file, "Kn_model_neuro3"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro3)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4875)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.45 0.04 0.38 0.52 1.00 1790 3819
## sd(sigma_Intercept) 0.62 0.05 0.52 0.73 1.00 2166 2987
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.02 0.15 0.73 1.30 1.00 749 1563
## sigma_Intercept -1.58 0.20 -1.98 -1.18 1.00 1440 3023
## neuro_t 0.13 0.05 0.03 0.23 1.00 776 1830
## sigma_neuro_t 0.16 0.07 0.03 0.30 1.00 1373 2787
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(Kn_model_neuro3)


pp_check(Kn_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

prior_summary(Kn_model_neuro3)
## prior class coef group resp dpar nlpar lb ub source
## (flat) b default
## (flat) b neuro_t (vectorized)
## (flat) b sigma default
## (flat) b neuro_t sigma (vectorized)
## student_t(3, 1.2, 2.5) Intercept default
## student_t(3, 0, 2.5) Intercept sigma default
## student_t(3, 0, 2.5) sd 0 default
## student_t(3, 0, 2.5) sd sigma 0 default
## student_t(3, 0, 2.5) sd person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd person_id sigma 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id sigma 0 (vectorized)
Model comparison
scale vs. no scale parameter
Kn_model_neuro2 <- brm(negemo_full_m | cens(Acens) ~ neuro_t + (1|person_id), data = dataset,
iter = 6000, warmup = 2000, chains = 4,
control = list(adapt_delta = .98), inits = 0.1 ,
file = paste("models/", params$file, "Kn_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro2)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4875)
## Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
## total post-warmup draws = 16000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.48 0.04 0.41 0.57 1.01 908 1320
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.92 0.16 0.62 1.24 1.00 777 1589
## neuro_t 0.16 0.05 0.05 0.27 1.00 828 1734
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.45 0.01 0.44 0.46 1.00 13619 10905
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelA <- Kn_model_neuro2
modelB <- Kn_model_neuro3
modelA <- add_criterion(modelA, "loo")
modelB <- add_criterion(modelB, "loo")
loo <- loo_compare(modelA,modelB, criterion = "loo")
loo <- as.data.frame(loo)
loo$Dataset <- params$file
loo <- tibble::rownames_to_column(loo, "model")
library("writexl")
write_xlsx(loo,paste0("loo", params$file, ".xlsx"))
kable(loo)
modelB |
0.0000 |
0.0000 |
-2135.376 |
89.94285 |
281.82853 |
26.680040 |
4270.751 |
179.8857 |
Dataset 9 public.csv |
modelA |
-951.9463 |
68.8245 |
-3087.322 |
84.67427 |
86.26997 |
3.524124 |
6174.644 |
169.3485 |
Dataset 9 public.csv |
censoring vs. no censoring
Kn_model_neuro4 <- brm(bf(negemo_full_m ~ neuro_t + (1|person_id),
sigma ~ neuro_t+ (1|person_id)), data = dataset,
iter = 7000, warmup = 2000, chains = 4,
control = list(adapt_delta = .9999), init = 0,
file = paste("models/", params$file, "Kn_model_neuro4"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro4)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4875)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.41 0.03 0.35 0.48 1.00 1151 2200
## sd(sigma_Intercept) 0.76 0.06 0.65 0.88 1.00 1024 1987
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.10 0.13 0.84 1.35 1.01 472 1160
## sigma_Intercept -2.07 0.25 -2.55 -1.57 1.01 544 1229
## neuro_t 0.12 0.05 0.03 0.21 1.01 501 909
## sigma_neuro_t 0.26 0.09 0.09 0.43 1.01 551 1164
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
extract_param <- function(model, parameter) {
ci <- posterior_summary(model, variable = parameter)
est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
est
}
results_Cens <- data.frame(matrix(nrow = 2,
ncol = 6+1))
names(results_Cens) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma",
"posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma"
)
results_Cens$model <- c("modelCensoring", "modelnoCensoring")
#NA
results_Cens[1, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_Cens[1, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")
results_Cens[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro4, "b_neuro_t")
results_Cens[2, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "negemo_sigma"] <- extract_param(Kn_model_neuro4, "b_sigma_Intercept")
BCLSM vs. model C (two-part model)
dataset <- dataset %>% left_join(dataset %>% distinct(person_id, neuro_t) %>% mutate(neuro_Q =Hmisc::cut2(neuro_t, g = 4)), by = c("person_id", "neuro_t"))
Kn_model_neuro_jinxed <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
sigma ~ neuro_t + (1|person_id)), data = dataset,
iter = 5000, warmup = 2000, chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = paste("models/", params$file, "Kn_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kn_model_neuro_jinxed)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q))
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4875)
## Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
## total post-warmup draws = 12000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.33)) 0.44 0.07 0.33 0.60 1.00 1906 3514
## sd(Intercept:neuro_Q[2.33,3.33)) 0.42 0.06 0.32 0.56 1.00 1264 2476
## sd(Intercept:neuro_Q3.33) 0.55 0.12 0.38 0.84 1.00 1596 3408
## sd(Intercept:neuro_Q[3.67,4.67]) 0.50 0.10 0.35 0.72 1.00 1637 2975
## sd(sigma_Intercept) 0.62 0.05 0.52 0.72 1.00 1179 1993
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.02 0.15 0.73 1.32 1.01 820 1398
## sigma_Intercept -1.58 0.21 -1.99 -1.16 1.00 882 1734
## neuro_t 0.13 0.05 0.02 0.23 1.00 879 1057
## sigma_neuro_t 0.17 0.07 0.02 0.31 1.00 939 1596
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kn_model_neuro3
modelC <- Kn_model_neuro_jinxed
modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")
loo_c <- loo_compare(modelB,modelC, criterion = "loo")
loo_c <- as.data.frame(loo_c)
loo_c$Dataset <- params$file
loo_c <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_c,paste0("loo_c", params$file, ".xlsx"))
kable(loo_c)
modelB |
0.000000 |
0.000000 |
-2135.376 |
89.94285 |
281.8285 |
26.68004 |
4270.751 |
179.8857 |
Dataset 9 public.csv |
modelC |
-0.592416 |
1.919932 |
-2135.968 |
90.01112 |
282.3491 |
26.97450 |
4271.936 |
180.0222 |
Dataset 9 public.csv |
control for gender
dataset$gender <- as.factor(dataset$gender)
Kn_model_sex <- brm(bf(negemo_full_m | cens(Acens) ~ neuro_t + gender + (1|person_id),
sigma ~ neuro_t + gender), data = dataset,
iter = 9000, warmup = 2000, chains = 8,
control = list(adapt_delta = .99), inits = 0.1,
file = paste("models/", params$file, "Kn_model_sex"))
print(Kn_model_sex)
pp_check(Kn_model_sex)
plot(Kn_model_sex)
BCLSM Positive Emotion
Kp_model_neuro3 <- brm(bf(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id),
sigma ~ neuro_t + (1|person_id)), data = dataset,
chains = 4,
control = list(adapt_delta = .95), inits = 0.1,
iter = 7000, warmup = 2000,
file = paste("models/", params$file, "Kp_model_neuro3"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro3)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4885)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.39 0.03 0.33 0.45 1.00 1333 2608
## sd(sigma_Intercept) 0.37 0.03 0.32 0.44 1.00 2118 4741
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.75 0.13 3.50 4.00 1.00 815 1877
## sigma_Intercept -1.14 0.12 -1.39 -0.90 1.00 1433 3109
## neuro_t -0.24 0.04 -0.32 -0.16 1.00 872 1913
## sigma_neuro_t 0.07 0.04 -0.01 0.16 1.00 1446 2877
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(Kp_model_neuro3)
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Censored responses are not shown in 'pp_check'.

plot(Kp_model_neuro3)


prior_summary(Kp_model_neuro3)
## prior class coef group resp dpar nlpar lb ub source
## (flat) b default
## (flat) b neuro_t (vectorized)
## (flat) b sigma default
## (flat) b neuro_t sigma (vectorized)
## student_t(3, 3.1, 2.5) Intercept default
## student_t(3, 0, 2.5) Intercept sigma default
## student_t(3, 0, 2.5) sd 0 default
## student_t(3, 0, 2.5) sd sigma 0 default
## student_t(3, 0, 2.5) sd person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id 0 (vectorized)
## student_t(3, 0, 2.5) sd person_id sigma 0 (vectorized)
## student_t(3, 0, 2.5) sd Intercept person_id sigma 0 (vectorized)
Model comparison
scale vs. no scale parameter
Kp_model_neuro2 <- brm(posemo_full_m | cens(Acens_p) ~ neuro_t + (1|person_id), data = dataset,
iter = 7000, warmup = 2000, chains = 4,
control = list(adapt_delta = .95), inits = 0.1,
file = paste("models/", params$file, "Kp_model_neuro2"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro2)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: posemo_full_m | cens(Acens_p) ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4885)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.39 0.03 0.33 0.46 1.00 899 2411
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.74 0.12 3.49 3.98 1.00 828 1663
## neuro_t -0.24 0.04 -0.32 -0.15 1.00 797 1645
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.43 0.00 0.42 0.44 1.00 16530 13960
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelAp <- Kp_model_neuro2
modelBp <- Kp_model_neuro3
modelAp <- add_criterion(modelAp, "loo")
modelBp <- add_criterion(modelBp, "loo")
looP <- loo_compare(modelAp,modelBp, criterion = "loo")
looP <- as.data.frame(looP)
looP$Dataset <- params$file
looP <- tibble::rownames_to_column(looP, "model")
library("writexl")
write_xlsx(looP,paste0("looP", params$file, ".xlsx"))
kable(looP)
modelBp |
0.000 |
0.00000 |
-2443.145 |
98.92135 |
281.99858 |
33.323019 |
4886.29 |
197.8427 |
Dataset 9 public.csv |
modelAp |
-468.065 |
65.12891 |
-2911.210 |
78.41387 |
85.88819 |
2.792582 |
5822.42 |
156.8277 |
Dataset 9 public.csv |
censoring vs. no censoring
Kp_model_neuro4 <- brm(bf(posemo_full_m ~ neuro_t + (1|person_id),
sigma ~ neuro_t + (1|person_id)), data = dataset,
chains = 4,
control = list(adapt_delta = .9999), inits = 0,
iter = 7000, warmup = 2000,
file = paste("models/", params$file, "Kp_model_neuro4"))
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro4)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: posemo_full_m ~ neuro_t + (1 | person_id)
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4885)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.39 0.03 0.33 0.45 1.00 2222 4357
## sd(sigma_Intercept) 0.37 0.03 0.31 0.43 1.00 3857 6200
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.75 0.13 3.49 4.00 1.00 1445 2868
## sigma_Intercept -1.14 0.12 -1.38 -0.91 1.00 2840 5681
## neuro_t -0.24 0.05 -0.33 -0.15 1.00 1474 3396
## sigma_neuro_t 0.07 0.04 -0.01 0.15 1.00 2724 5920
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
#pa
results_Cens[1, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_Cens[1, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_Cens[1, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")
results_Cens[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro4, "b_neuro_t")
results_Cens[2, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_neuro_t")
results_Cens[2, "posemo_sigma"] <- extract_param(Kp_model_neuro4, "b_sigma_Intercept")
BCLSM vs. model C (two-part model)
Kp_model_neuro_jinxed <- brm(bf(posemo_full_m | cens(Acens) ~ neuro_t + (1|gr(person_id, by = neuro_Q)),
sigma ~ neuro_t + (1|person_id)), data = dataset,
iter = 5000, warmup = 2000, chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = paste("models/", params$file, "Kp_model_neuro_jinxed"))
## Warning: Rows containing NAs were excluded from the model.
print(Kp_model_neuro_jinxed)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: posemo_full_m | cens(Acens) ~ neuro_t + (1 | gr(person_id, by = neuro_Q))
## sigma ~ neuro_t + (1 | person_id)
## Data: dataset (Number of observations: 4885)
## Draws: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
## total post-warmup draws = 12000
##
## Group-Level Effects:
## ~person_id (Number of levels: 85)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept:neuro_Q[1.00,2.33)) 0.30 0.05 0.23 0.42 1.00 2603 4558
## sd(Intercept:neuro_Q[2.33,3.33)) 0.38 0.06 0.29 0.51 1.00 1413 2376
## sd(Intercept:neuro_Q3.33) 0.41 0.09 0.27 0.64 1.00 1731 3680
## sd(Intercept:neuro_Q[3.67,4.67]) 0.37 0.07 0.26 0.54 1.00 2456 4663
## sd(sigma_Intercept) 0.35 0.03 0.30 0.41 1.00 2817 4785
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.55 0.11 3.33 3.76 1.00 1253 2581
## sigma_Intercept -0.99 0.12 -1.22 -0.76 1.00 1874 3799
## neuro_t -0.21 0.04 -0.29 -0.13 1.00 1094 2379
## sigma_neuro_t 0.03 0.04 -0.05 0.11 1.00 1861 3647
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
modelB <- Kp_model_neuro3
modelC <- Kp_model_neuro_jinxed
modelB <- add_criterion(modelB, "loo")
modelC <- add_criterion(modelC, "loo")
loo_cP <- loo_compare(modelB,modelC, criterion = "loo")
## Warning: Not all models have the same y variable. ('yhash' attributes do not match)
loo_cP <- as.data.frame(loo_cP)
loo_cP$Dataset <- params$file
#loo_cP <- tibble::rownames_to_column(loo_c, "model")
library("writexl")
write_xlsx(loo_cP,paste0("loo_cP", params$file, ".xlsx"))
kable(loo_cP)
modelB |
0.00000 |
0.00000 |
-2443.145 |
98.92135 |
281.9986 |
33.32302 |
4886.290 |
197.8427 |
Dataset 9 public.csv |
modelC |
-16.14791 |
50.96083 |
-2459.293 |
75.52584 |
233.6872 |
22.53285 |
4918.586 |
151.0517 |
Dataset 9 public.csv |
extract_param <- function(model, parameter) {
ci <- posterior_summary(model, variable = parameter)
est <- sprintf("%.2f %.2f [%.2f;%.2f]", ci[,"Estimate"],ci[,"Est.Error"], ci[,"Q2.5"], ci[,"Q97.5"])
est
}
results_K <- data.frame(matrix(nrow = 7,
ncol = 8+1))
names(results_K) <- c("model", "negemo_b_neuro", "negemo_b_neuro_sigma", "negemo_sigma", "b_neg_sigma_sex",
"posemo_b_neuro", "posemo_b_neuro_sigma", "posemo_sigma", "b_pos_sigma_sex"
)
results_K$model <- c("model1", "model2", "model3",
"RSD", "RSD_weight", "SD", "gender")
#NA
results_K[2, "negemo_b_neuro"] <- extract_param(Kn_model_neuro2, "b_neuro_t")
results_K[2, "negemo_sigma"] <- extract_param(Kn_model_neuro2, "sigma")
results_K[3, "negemo_b_neuro"] <- extract_param(Kn_model_neuro3, "b_neuro_t")
results_K[3, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_neuro_t")
results_K[3, "negemo_sigma"] <- extract_param(Kn_model_neuro3, "b_sigma_Intercept")
#gender
results_K[7, "negemo_b_neuro"] <- extract_param(Kn_model_sex, "b_neuro_t")
results_K[7, "negemo_b_neuro_sigma"] <- extract_param(Kn_model_sex, "b_sigma_neuro_t")
results_K[7, "negemo_sigma"] <- extract_param(Kn_model_sex, "b_sigma_Intercept")
results_K[7, "b_neg_sigma_sex"] <- extract_param(Kn_model_sex, "b_sigma_gender1")
#pa
results_K[2, "posemo_b_neuro"] <- extract_param(Kp_model_neuro2, "b_neuro_t")
results_K[2, "posemo_sigma"] <- extract_param(Kp_model_neuro2, "sigma")
results_K[3, "posemo_b_neuro"] <- extract_param(Kp_model_neuro3, "b_neuro_t")
results_K[3, "posemo_b_neuro_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_neuro_t")
results_K[3, "posemo_sigma"] <- extract_param(Kp_model_neuro3, "b_sigma_Intercept")
RVI (Relative Variability Index)
data_w <- unique(dataset[,2:5])
Unweighted RVI
data_w$RSD_NA <- NA
for (i in 1:nrow(data_w)) {
data_w$RSD_NA[i] <- relativeSD(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
1, 5)
}
range(data_w$RSD_NA, na.rm = T)
## [1] 0.1191486 0.5912857
mean(data_w$RSD_NA, na.rm = T)
## [1] 0.3122148
sd(data_w$RSD_NA, na.rm = T)
## [1] 0.1090164
data_w$logrsd_n <- log(data_w$RSD_NA)
#plot(data_w$logrsd_n)
m_rvi_na <- brm(logrsd_n ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kn_model_logrsd_uw"))
print(m_rvi_na)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_n ~ neuro_t
## Data: data_w (Number of observations: 85)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.27 0.11 -1.49 -1.04 1.00 4169 2955
## neuro_t 0.01 0.04 -0.07 0.09 1.00 4215 3167
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.36 0.03 0.31 0.42 1.00 4395 3346
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,3] <- extract_param(m_rvi_na, "b_neuro_t")
data_w$RSD_PA <- NA
for (i in 1:nrow(data_w)) {
data_w$RSD_PA[i] <- relativeSD(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
1, 5)
}
range(data_w$RSD_PA)
## [1] 0.06820643 0.43999361
data_w$logrsd_p <- log(data_w$RSD_PA)
m_rvi_pa <- brm(logrsd_p ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kp_model_logrsd_uw"))
print(m_rvi_pa)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_p ~ neuro_t
## Data: data_w (Number of observations: 85)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.79 0.12 -2.03 -1.56 1.00 3542 2707
## neuro_t 0.06 0.04 -0.02 0.14 1.00 3458 2933
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.37 0.03 0.32 0.44 1.00 3510 2692
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[4,6] <- extract_param(m_rvi_pa, "b_neuro_t")
Weighted RVI
data_w$mean_NA <- NA
for (i in 1:nrow(data_w)) {
data_w$mean_NA[i] <- mean(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
mean(data_w$mean_NA)
## [1] 1.46
sd(data_w$mean_NA)
## [1] 0.452036
data_w$mean_PA <- NA
for (i in 1:nrow(data_w)) {
data_w$mean_PA[i] <- mean(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
mean(data_w$mean_PA)
## [1] 3.065159
sd(data_w$mean_PA)
## [1] 0.4552138
data_w$weight_NA <- NA
for (i in 1:nrow(data_w)) {
if (!is.na(data_w$mean_NA[i])) {
data_w$weight_NA[i] <- maximumSD(data_w$mean_NA[i], # Mittelwert
1, # Minimum
5, # Maximum
sum(!is.na(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]]))
)
# W as reported in paper
data_w$weight_NA[i] <- data_w$weight_NA[i]^2
}
}
mean(data_w$weight_NA)
## [1] 1.40632
sd(data_w$weight_NA)
## [1] 1.1392
range(data_w$weight_NA)
## [1] 0.003547522 4.031001654
m_rvi_na_w <- brm(logrsd_n| weights(weight_NA) ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kn_model_logrsd"))
## Warning: Rows containing NAs were excluded from the model.
print(m_rvi_na_w)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_n | weights(weight_NA) ~ neuro_t
## Data: data_w (Number of observations: 85)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.22 0.11 -1.43 -1.00 1.00 2668 2396
## neuro_t 0.01 0.03 -0.06 0.08 1.00 3059 2720
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.34 0.02 0.30 0.39 1.00 3406 2782
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,3] <- extract_param(m_rvi_na_w, "b_neuro_t")
data_w$weight_PA <- NA
for (i in 1:nrow(data_w)) {
if (!is.na(data_w$mean_PA[i])) {
data_w$weight_PA[i] <- maximumSD(data_w$mean_PA[i], # Mittelwert
1, # Minimum
5, # Maximum
sum(!is.na(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]]))
)
# W as reported in paper
data_w$weight_PA[i] <- data_w$weight_PA[i]^2
}
}
m_rvi_pa_w <- brm(logrsd_p| weights(weight_PA) ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kp_model_logrsd"))
## Warning: Rows containing NAs were excluded from the model.
print(m_rvi_pa_w)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logrsd_p | weights(weight_PA) ~ neuro_t
## Data: data_w (Number of observations: 85)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.78 0.06 -1.90 -1.66 1.00 3751 2952
## neuro_t 0.06 0.02 0.01 0.10 1.00 3985 2914
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.36 0.01 0.34 0.39 1.00 3966 2776
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[5,6] <- extract_param(m_rvi_pa_w, "b_neuro_t")
SD
data_w$sd_NA <- NA
for (i in 1:nrow(data_w)) {
data_w$sd_NA[i] <- sd(dataset$negemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
data_w$sd_PA <- NA
for (i in 1:nrow(data_w)) {
data_w$sd_PA[i] <- sd(dataset$posemo_full_m[dataset$person_id == data_w$person_id[i]],
na.rm = T)
}
mean(data_w$sd_NA)
## [1] 0.3358798
mean(data_w$sd_PA)
## [1] 0.4077103
data_w$sd_PA[data_w$sd_PA == 0] <- NA
data_w$sd_NA[data_w$sd_NA == 0] <- NA
data_w$logsd_NA <- log(data_w$sd_NA)
data_w$logsd_PA <- log(data_w$sd_PA)
m_sd_na <- brm(logsd_NA ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kn_model_logsd"))
## Warning: Rows containing NAs were excluded from the model.
m_sd_na
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logsd_NA ~ neuro_t
## Data: data_w (Number of observations: 85)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -2.09 0.24 -2.56 -1.64 1.00 3889 2831
## neuro_t 0.27 0.08 0.10 0.43 1.00 3857 2708
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.76 0.06 0.66 0.89 1.00 4301 2902
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,3] <- extract_param(m_sd_na, "b_neuro_t")
m_sd_pa <- brm(logsd_PA ~ neuro_t, data= data_w,
file = paste("models/", params$file, "Kp_model_logsd"))
## Warning: Rows containing NAs were excluded from the model.
m_sd_pa
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: logsd_PA ~ neuro_t
## Data: data_w (Number of observations: 85)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -1.15 0.12 -1.39 -0.91 1.00 3309 2659
## neuro_t 0.07 0.04 -0.01 0.15 1.00 3474 2758
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.38 0.03 0.33 0.44 1.00 3510 3066
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_K[6,6] <- extract_param(m_sd_pa, "b_neuro_t")
library("writexl")
write_xlsx(results_K,paste0("", params$file, ".xlsx"))
Incremental Validity of SD
na_noneurot <- brm(bf(negemo_full_m | cens(Acens) ~ (1|person_id),
sigma ~ (1|person_id)), data = dataset,
iter = 7000, warmup = 2000,chains = 4,
control = list(adapt_delta = .99), init = 0.1,
file = "na_noneurot")
## Warning: Rows containing NAs were excluded from the model.
print(na_noneurot)
## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: negemo_full_m | cens(Acens) ~ (1 | person_id)
## sigma ~ (1 | person_id)
## Data: dataset (Number of observations: 5616)
## Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 20000
##
## Group-Level Effects:
## ~person_id (Number of levels: 97)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.50 0.04 0.43 0.58 1.00 1216 2231
## sd(sigma_Intercept) 0.61 0.05 0.53 0.71 1.01 1281 3288
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.40 0.05 1.29 1.50 1.01 370 865
## sigma_Intercept -1.09 0.06 -1.22 -0.96 1.00 659 1367
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
rans <- coef(na_noneurot, summary = T)
rans_i <- as.data.frame(rans$person_id[,,"Intercept"]) %>% tibble::rownames_to_column("person_id")
rans_s <- as.data.frame(rans$person_id[,,"sigma_Intercept"]) %>% tibble::rownames_to_column("person_id")
nrow(rans_s)
## [1] 97
nrow(rans_i)
## [1] 97
nrow(data_w)
## [1] 97
dat <- merge(rans_s, rans_i, all = T, by= "person_id")
dat <- merge(dat, data_w, all = T, by= "person_id")
names(dat)[2] <- "Est.SD"
names(dat)[6] <- "Est.M"
fit1 <- lm(neuro_t ~ Est.SD + Est.M , data=dat)
summary(fit1)
##
## Call:
## lm(formula = neuro_t ~ Est.SD + Est.M, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6180 -0.8061 0.0733 0.7109 2.1397
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3885 0.5360 4.456 2.62e-05 ***
## Est.SD 0.2390 0.1999 1.196 0.235
## Est.M 0.4399 0.2685 1.638 0.105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9447 on 82 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.09573, Adjusted R-squared: 0.07367
## F-statistic: 4.34 on 2 and 82 DF, p-value: 0.01615
fit1.2 <- lm(neuro_t ~ Est.M , data=dat)
summary(fit1.2)
##
## Call:
## lm(formula = neuro_t ~ Est.M, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5357 -0.7157 0.1332 0.6705 2.0233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8828 0.3301 5.703 1.76e-07 ***
## Est.M 0.6113 0.2276 2.686 0.00874 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9471 on 83 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.07996, Adjusted R-squared: 0.06888
## F-statistic: 7.214 on 1 and 83 DF, p-value: 0.008735
aov <- anova(fit1.2, fit1)
aov
## Analysis of Variance Table
##
## Model 1: neuro_t ~ Est.M
## Model 2: neuro_t ~ Est.SD + Est.M
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 83 74.457
## 2 82 73.181 1 1.2757 1.4295 0.2353
summary(fit1)$r.squared-summary(fit1.2)$r.squared
## [1] 0.01576371
results_SDin <- data.frame(matrix(nrow = 1, ncol = 9))
names(results_SDin) <- c("Dataset","b_SD","Err.SD","p(b_SD)","b_M","Err.M","p(b_M)","ΔR²", "p")
results_SDin$Dataset <- params$file
results_SDin$`ΔR²` <- summary(fit1)$r.squared-summary(fit1.2)$r.squared
results_SDin$`p` <- aov$`Pr(>F)`[2]
results_SDin$Err.SD <- summary(fit1)$coefficients[2,2]
results_SDin$b_SD <- fit1$coefficients[2]
results_SDin$`p(b_SD)` <- summary(fit1)$coefficients[2,4]
results_SDin$b_M <- fit1$coefficients[3]
results_SDin$`p(b_M)` <- summary(fit1)$coefficients[3,4]
results_SDin$Err.M <- summary(fit1)$coefficients[3,2]
library("writexl")
write_xlsx(results_SDin,paste0("SD", params$file, ".xlsx"))