1 Simulate Skewed Data

latentaffect as skewed

set.seed(0405191)

n <- 200
days_per_person <- 30
n_days <- n*days_per_person

people <- tibble(
  id = 1:n,
  neurot = rnorm(n), 
  latentaffect = brms::rskew_normal(n, alpha = 100), 
  latentaffectsd =rnorm(n), 
  
)
sd(people$neurot)
## [1] 0.9622981
qplot(people$latentaffect, binwidth= 0.1)
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.

Measure Function no Error, cuts off skewed distribution (since these do not have their own minimum value)

measure <- function(x) {
  x[x < 0] <- 0
  x[x > 4] <- 4
  round(x,1) +1
}

1.1 3 true models

True model 1: Associations with the mean (diary4) True model 2: Associations with SD (diary5) True model 3: Both (diary6)

diary4 <-  people %>% full_join(
   tibble(
     id = rep(1:n, each = days_per_person),
   ), by = 'id') %>%
   mutate(
     Aff1 =  brms::rskew_normal(n = n_days, xi = 0.1 + 0.3* neurot + 0.3* latentaffect, sigma = exp(-0.6 + 0 * neurot + 0.3* latentaffectsd), alpha = 10)
   )

qplot(diary4$Aff1,  binwidth = .1)

qplot(measure(diary4$Aff1), binwidth = .1)

diary4  %>% group_by(id, neurot)  %>% 
  summarise(Aff1 = mean(Aff1)) %>% ungroup() %>% summarise(cor(Aff1, neurot))
## `summarise()` has grouped output by 'id'. You can override using the `.groups`
## argument.
## # A tibble: 1 × 1
##   `cor(Aff1, neurot)`
##                 <dbl>
## 1               0.579
sd(diary4$neurot)
## [1] 0.9599693
sd(diary4$Aff1)
## [1] 0.7703411
hist(diary4$Aff1)

qplot(diary4$neurot, diary4$Aff1)

diary5 <-  people %>% full_join(
   tibble(
     id = rep(1:n, each = days_per_person),
   ), by = 'id') %>%
   mutate(
     Aff2 =brms::rskew_normal(n = n_days, xi = 0.1 + 0* neurot + 0.3* latentaffect, sigma = exp(-.8 + 0.15 * neurot + 0.3* latentaffectsd), alpha = 10)
   )
       
sd(diary5$Aff2)
## [1] 0.636185
qplot(diary5$Aff2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

qplot(diary5$neurot, diary5$Aff2, alpha = I(0.1)) + geom_hline(yintercept = -2, linetype = "dashed")

qplot(measure(diary5$Aff2), binwidth = .1)

diary6 <-  people %>% full_join(
   tibble(
     id = rep(1:n, each = days_per_person),
   ), by = 'id') %>%
   mutate(
      Aff3 =brms::rskew_normal(n = n_days, xi =0.3+ 0.3*neurot + 0.3*latentaffect, sigma = exp(-.8 + 0.15 * neurot + 0.3*latentaffectsd), alpha = 10)
   )

qplot(diary6$Aff3, binwidth = .1)

qplot(measure(diary6$Aff3), binwidth = .1)

sd(diary6$neurot)
## [1] 0.9599693
sd(diary6$Aff3)
## [1] 0.7285978
qplot(diary6$neurot, diary6$Aff3, alpha = I(0.1)) + geom_hline(yintercept = -2, linetype = "dashed")

Add measured Affect to all three Simulations

diary4 <- diary4 %>%  
  mutate(
    Affect_m =  measure(Aff1)                          
  )
sd(diary4$Affect_m)
## [1] 0.7325122
round(cor(diary4 %>% select(Aff1, Affect_m)),2)   
##          Aff1 Affect_m
## Aff1     1.00     0.99
## Affect_m 0.99     1.00
qplot(diary4$Affect_m, binwidth=.1)

diary5 <- diary5 %>%  
  mutate(
    Affect_m =  measure(Aff2 )                          
  )

sd(diary5$Affect_m)
## [1] 0.6240122
round(cor(diary5 %>% select(Aff2, Affect_m)),2)   
##          Aff2 Affect_m
## Aff2        1        1
## Affect_m    1        1
qplot(diary5$Affect_m, binwidth=.1)

diary6 <- diary6 %>%  
  mutate(
    Affect_m =  measure(Aff3)                          
  )
sd(diary6$Affect_m)
## [1] 0.7079548
#round(cor(diary6 %>% select(Aff3, Affect_m)),2)   
qplot(diary6$Affect_m, binwidth=.1)

diary4$Acens <- case_when(diary4$Affect_m == 1 ~ "left",
                         diary4$Affect_m == 5 ~ "right",
                         TRUE ~ "none")
table(diary4$Acens)
## 
##  left  none right 
##   750  5237    13
diary5$Acens <- case_when(diary5$Affect_m == 1 ~ "left",
                         diary5$Affect_m == 5 ~ "right",
                         TRUE ~ "none")
table(diary5$Acens)
## 
##  left  none right 
##   607  5385     8
diary6$Acens <- case_when(diary6$Affect_m == 1 ~ "left",
                         diary6$Affect_m == 5 ~ "right",
                         TRUE ~ "none")
table(diary6$Acens)
## 
##  left  none right 
##   484  5507     9

Add measured neuroticism to all three Simulations

measure_n <- function(x) {
  # expects that x is N(0,1)
  x <- x 
   
  round(x,1) 
}

diary4 <- diary4 %>%  
  mutate(
    neurot_m =  measure_n(neurot)                          
  )
sd(diary4$neurot_m)
## [1] 0.9618098
#round(cor(diary4 %>% select(neurot, neurot_m)),2)   
qplot(diary4$neurot_m, binwidth=.1)

diary5 <- diary5 %>%  
  mutate(
    neurot_m =  measure_n(neurot)                          
  )
sd(diary5$neurot_m)
## [1] 0.9618098
#round(cor(diary5 %>% select(neurot, neurot_m)),2)   
#qplot(diary5$neurot_m, binwidth=.1)


diary6 <- diary6 %>%  
  mutate(
    neurot_m =  measure_n(neurot)                          
  )
sd(diary6$neurot_m)
## [1] 0.9618098
#round(cor(diary6 %>% select(neurot, neurot_m)),2)   
#qplot(diary6$neurot_m, binwidth=.1)

2 Estimated models

model 1: naiv: only associations with the mean, normal distribution assumption model 2: associations with the mean, censored model 3: association with mean and variability, censored

2.1 Simulation 4 (effect on mean)

w4model_neuro3 <- brm(bf(Affect_m | cens(Acens) ~ neurot_m + (1|id),
                       sigma ~ neurot_m + (1|id)), data = diary4,
                    iter = 6000, warmup = 2000, init = 0.1,
                    file = "w4skew")
print(w4model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: Affect_m | cens(Acens) ~ neurot_m + (1 | id) 
##          sigma ~ neurot_m + (1 | id)
##    Data: diary4 (Number of observations: 6000) 
##   Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
##          total post-warmup draws = 16000
## 
## Group-Level Effects: 
## ~id (Number of levels: 200) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.42      0.02     0.38     0.47 1.00     3160     6200
## sd(sigma_Intercept)     0.31      0.02     0.28     0.35 1.00     4987     6670
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.80      0.03     1.74     1.86 1.00     1611     3574
## sigma_Intercept    -0.53      0.02    -0.58    -0.49 1.00     4485     7760
## neurot_m            0.34      0.03     0.28     0.40 1.00     1902     3594
## sigma_neurot_m     -0.05      0.03    -0.10    -0.00 1.00     4964     8347
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(w4model_neuro3)

prior_summary(w4model_neuro3)
##                   prior     class      coef group resp  dpar nlpar lb ub
##                  (flat)         b                                       
##                  (flat)         b  neurot_m                             
##                  (flat)         b                      sigma            
##                  (flat)         b  neurot_m            sigma            
##  student_t(3, 1.8, 2.5) Intercept                                       
##    student_t(3, 0, 2.5) Intercept                      sigma            
##    student_t(3, 0, 2.5)        sd                                   0   
##    student_t(3, 0, 2.5)        sd                      sigma        0   
##    student_t(3, 0, 2.5)        sd              id                   0   
##    student_t(3, 0, 2.5)        sd Intercept    id                   0   
##    student_t(3, 0, 2.5)        sd              id      sigma        0   
##    student_t(3, 0, 2.5)        sd Intercept    id      sigma        0   
##        source
##       default
##  (vectorized)
##       default
##  (vectorized)
##       default
##       default
##       default
##       default
##  (vectorized)
##  (vectorized)
##  (vectorized)
##  (vectorized)

2.2 Simulation 5 (effect on SD)

w5model_neuro3 <- brm(bf(Affect_m | cens(Acens) ~ neurot_m + (1|id),
                    sigma ~ neurot_m + (1|id)), data = diary5,
                    control = list(adapt_delta = .99),chains = 4,
                    iter = 6000, warmup = 2000, init = 0.1,
                   file = "w5skew")
print(w5model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: Affect_m | cens(Acens) ~ neurot_m + (1 | id) 
##          sigma ~ neurot_m + (1 | id)
##    Data: diary5 (Number of observations: 6000) 
##   Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
##          total post-warmup draws = 16000
## 
## Group-Level Effects: 
## ~id (Number of levels: 200) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.38      0.02     0.34     0.42 1.00     2699     5252
## sd(sigma_Intercept)     0.28      0.02     0.25     0.32 1.00     5818     9148
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.70      0.03     1.64     1.75 1.00     1620     2974
## sigma_Intercept    -0.71      0.02    -0.76    -0.67 1.00     5621     8199
## neurot_m            0.11      0.03     0.05     0.17 1.00     1761     3491
## sigma_neurot_m      0.19      0.02     0.14     0.24 1.00     5542     9003
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
prior_summary(w5model_neuro3)
##                   prior     class      coef group resp  dpar nlpar lb ub
##                  (flat)         b                                       
##                  (flat)         b  neurot_m                             
##                  (flat)         b                      sigma            
##                  (flat)         b  neurot_m            sigma            
##  student_t(3, 1.6, 2.5) Intercept                                       
##    student_t(3, 0, 2.5) Intercept                      sigma            
##    student_t(3, 0, 2.5)        sd                                   0   
##    student_t(3, 0, 2.5)        sd                      sigma        0   
##    student_t(3, 0, 2.5)        sd              id                   0   
##    student_t(3, 0, 2.5)        sd Intercept    id                   0   
##    student_t(3, 0, 2.5)        sd              id      sigma        0   
##    student_t(3, 0, 2.5)        sd Intercept    id      sigma        0   
##        source
##       default
##  (vectorized)
##       default
##  (vectorized)
##       default
##       default
##       default
##       default
##  (vectorized)
##  (vectorized)
##  (vectorized)
##  (vectorized)
plot(w5model_neuro3)

2.3 Simulation 6 (effects on both)

w6model_neuro3 <- brm(bf(Affect_m| cens(Acens)  ~ neurot_m + (1|id),
                       sigma ~ neurot_m + (1|id)), data = diary6,
                      iter = 7000, warmup = 2000,chains = 4,
                    control = list(adapt_delta = .99), inits = 0.1 ,        #options = list(adapt_delta = 0.99)
                   file = "w6skew")
## Warning: Argument 'inits' is deprecated. Please use argument 'init' instead.
print(w6model_neuro3)
##  Family: gaussian 
##   Links: mu = identity; sigma = log 
## Formula: Affect_m | cens(Acens) ~ neurot_m + (1 | id) 
##          sigma ~ neurot_m + (1 | id)
##    Data: diary6 (Number of observations: 6000) 
##   Draws: 4 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 20000
## 
## Group-Level Effects: 
## ~id (Number of levels: 200) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.38      0.02     0.34     0.43 1.00     2628     5133
## sd(sigma_Intercept)     0.31      0.02     0.27     0.35 1.00     5413     9542
## 
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           1.90      0.03     1.84     1.95 1.01     1036     2057
## sigma_Intercept    -0.74      0.02    -0.79    -0.69 1.00     4179     7985
## neurot_m            0.41      0.03     0.36     0.47 1.00     1446     3315
## sigma_neurot_m      0.10      0.03     0.05     0.15 1.00     4533     7692
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(w6model_neuro3)

prior_summary(w6model_neuro3)
##                   prior     class      coef group resp  dpar nlpar lb ub
##                  (flat)         b                                       
##                  (flat)         b  neurot_m                             
##                  (flat)         b                      sigma            
##                  (flat)         b  neurot_m            sigma            
##  student_t(3, 1.8, 2.5) Intercept                                       
##    student_t(3, 0, 2.5) Intercept                      sigma            
##    student_t(3, 0, 2.5)        sd                                   0   
##    student_t(3, 0, 2.5)        sd                      sigma        0   
##    student_t(3, 0, 2.5)        sd              id                   0   
##    student_t(3, 0, 2.5)        sd Intercept    id                   0   
##    student_t(3, 0, 2.5)        sd              id      sigma        0   
##    student_t(3, 0, 2.5)        sd Intercept    id      sigma        0   
##        source
##       default
##  (vectorized)
##       default
##  (vectorized)
##       default
##       default
##       default
##       default
##  (vectorized)
##  (vectorized)
##  (vectorized)
##  (vectorized)

3 Results

extract_param2 <- function(model, parameter) {
  ci <- posterior_summary(model, variable = parameter)
  est <- sprintf("%.4f %.4f %.4f", ci[,"Estimate"], ci[,"Q2.5"], ci[,"Q97.5"])
  est
}

results_sim <- data.frame(matrix(nrow = 7, # Modelle & RVI 
                             ncol = 9+1)) 
names(results_sim) <- c("model", "w4_b_neuro", "w4_b_neuro_sigma", "w4_sigma",
                    "w5_b_neuro", "w5_b_neuro_sigma", "w5_sigma",
                    "w6_b_neuro", "w6_b_neuro_sigma", "w6_sigma"
                    )

results_sim$model <- c("model1", "model2", "model3",
                  "RVI", "RVI_weight", "SD", "SD*")



#summary(w4model_neuro)$fixed
#posterior_summary(w4model_neuro3)
results_sim[3, "w4_b_neuro"] <- extract_param2(w4model_neuro3, "b_neurot_m")
results_sim[3, "w4_b_neuro_sigma"] <- extract_param2(w4model_neuro3, "b_sigma_neurot_m")
results_sim[3, "w4_sigma"] <- extract_param2(w4model_neuro3, "b_sigma_Intercept")
results_sim[3, "w5_b_neuro"] <- extract_param2(w5model_neuro3, "b_neurot_m")
results_sim[3, "w5_b_neuro_sigma"] <- extract_param2(w5model_neuro3, "b_sigma_neurot_m")
results_sim[3, "w5_sigma"] <- extract_param2(w5model_neuro3, "b_sigma_Intercept")
results_sim[3, "w6_b_neuro"] <- extract_param2(w6model_neuro3, "b_neurot_m")
results_sim[3, "w6_b_neuro_sigma"] <- extract_param2(w6model_neuro3, "b_sigma_neurot_m")
results_sim[3, "w6_sigma"] <- extract_param2(w6model_neuro3, "b_sigma_Intercept")

4 RVI (Relative-Variability-Index)

4.1 Unweighted RVI for all three Simulations

people <- people %>%  
  mutate(
    neurot =  measure_n(neurot)                          
  )

id <- unique(diary4$id)
id <- as.data.frame(id)

people$RSD_d4 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary4$id) {
      people$RSD_d4[i] <- relativeSD(diary4$Affect_m[diary4$id == id$id[i]],
                                         1, 5)
    }
  } 


people$logrsd_d4 <- log(people$RSD_d4)

m_rsd_d4 <- brm(logrsd_d4 ~ neurot, data= people)
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 1 finished in 0.0 seconds.
## Chain 2 finished in 0.0 seconds.
## Chain 3 finished in 0.0 seconds.
## Chain 4 finished in 0.0 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.0 seconds.
## Total execution time: 0.4 seconds.
print(m_rsd_d4, digits=4)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_d4 ~ neurot 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI   Rhat Bulk_ESS Tail_ESS
## Intercept  -1.0840    0.0182  -1.1197  -1.0494 1.0010     4168     2975
## neurot     -0.0891    0.0194  -0.1273  -0.0504 1.0042     4437     2814
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI   Rhat Bulk_ESS Tail_ESS
## sigma   0.2647    0.0136   0.2402   0.2938 1.0001     3998     2676
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[4,3] <- extract_param2(m_rsd_d4, "b_neurot")
 
people$RSD_d5 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary5$id) {
      people$RSD_d5[i] <- relativeSD(diary5$Affect_m[diary5$id == id$id[i]],
                                         1, 5)
    }
  } 

people$logrsd_d5 <- log(people$RSD_d5)

m_rsd_d5 <- brm( logrsd_d5~ neurot, data= people)
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 1 finished in 0.0 seconds.
## Chain 2 finished in 0.0 seconds.
## Chain 3 finished in 0.0 seconds.
## Chain 4 finished in 0.0 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.0 seconds.
## Total execution time: 0.3 seconds.
m_rsd_d5
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_d5 ~ neurot 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.18      0.02    -1.22    -1.15 1.00     4279     2917
## neurot        0.12      0.02     0.08     0.15 1.00     3953     2897
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.25      0.01     0.23     0.28 1.00     3328     2769
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[4,6] <- extract_param2(m_rsd_d5, "b_neurot")

people$RSD_d6 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary6$id) {
      people$RSD_d6[i] <- relativeSD(diary6$Affect_m[diary6$id == id$id[i]],
                                         1, 5)
    }
  } 
## Warning in checkOutput(M, MIN, MAX): NaN returned. Data has a mean equal the
## minimum
people$logrsd_d6 <- log(people$RSD_d6)

m_rsd_d6 <- brm(logrsd_d6 ~ neurot, data= people)
## Warning: Rows containing NAs were excluded from the model.
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 1 finished in 0.0 seconds.
## Chain 2 finished in 0.0 seconds.
## Chain 3 finished in 0.0 seconds.
## Chain 4 finished in 0.0 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.0 seconds.
## Total execution time: 0.3 seconds.
m_rsd_d6
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_d6 ~ neurot 
##    Data: people (Number of observations: 199) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.25      0.02    -1.29    -1.21 1.00     3717     2692
## neurot       -0.02      0.02    -0.06     0.02 1.00     3329     2928
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.29      0.01     0.26     0.32 1.00     3769     2893
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[4,9] <- extract_param2(m_rsd_d6, "b_neurot")

4.2 weighted RVI for all three Simulations

people$mean_Aff_d4 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary4$id) {
      people$mean_Aff_d4[i] <- mean(diary4$Affect_m[diary4$id == id$id[i]],
                                   na.rm = T)
    }
  } 

range(people$mean_Aff_d4)
## [1] 1.026667 3.740000
people$mean_Aff_d5 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary5$id) {
      people$mean_Aff_d5[i] <- mean(diary5$Affect_m[diary5$id == id$id[i]],
                                   na.rm = T)
    }
  } 

range(people$mean_Aff_d5)
## [1] 1.186667 2.966667
people$mean_Aff_d6 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary6$id) {
      people$mean_Aff_d6[i] <- mean(diary6$Affect_m[diary6$id == id$id[i]],
                                   na.rm = T)
    }
  } 

range(people$mean_Aff_d6)
## [1] 1.000000 3.503333
people$weight_d4 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary4$id) {
      people$weight_d4[i] <- maximumSD(people$mean_Aff_d4[i], 
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(diary4$Affect_m[diary4$id == id$id[i]])) # Anzahl Beobachtungen in var eingeflossen/30
      ) 
      # W as reported in paper
      people$weight_d4[i] <- people$weight_d4[i]^2
    }
}

people$weight_d5 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary5$id) {
      people$weight_d5[i] <- maximumSD(people$mean_Aff_d5[i], 
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(diary5$Affect_m[diary5$id == id$id[i]])) # Anzahl Beobachtungen in var eingeflossen/30
      ) 
      # W as reported in paper
      people$weight_d5[i] <- people$weight_d5[i]^2
    }
}

people$weight_d6 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary6$id) {
      people$weight_d6[i] <- maximumSD(people$mean_Aff_d6[i], 
                                       1,  # Minimum
                                       5,  # Maximum
                                       sum(!is.na(diary6$Affect_m[diary6$id == id$id[i]])) # Anzahl Beobachtungen in var eingeflossen/30
      ) 
      # W as reported in paper
      people$weight_d6[i] <- people$weight_d6[i]^2
    }
}
m_rsd_d4_w <- brm(logrsd_d4| weights(weight_d4) ~ neurot, data= people)
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 finished in 0.2 seconds.
## Chain 2 finished in 0.2 seconds.
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 finished in 0.2 seconds.
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 finished in 0.2 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.2 seconds.
## Total execution time: 0.5 seconds.
m_rsd_d4_w
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_d4 | weights(weight_d4) ~ neurot 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.08      0.01    -1.10    -1.05 1.00     3721     3273
## neurot       -0.08      0.01    -0.10    -0.05 1.00     3341     2930
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.28      0.01     0.26     0.30 1.00     3280     2738
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[5,3] <- extract_param2(m_rsd_d4_w, "b_neurot")

m_rsd_d5_w <- brm(logrsd_d5| weights(weight_d5) ~ neurot, data= people)
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 finished in 0.2 seconds.
## Chain 2 finished in 0.2 seconds.
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 finished in 0.2 seconds.
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 finished in 0.2 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.2 seconds.
## Total execution time: 0.4 seconds.
m_rsd_d5_w
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_d5 | weights(weight_d5) ~ neurot 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.19      0.01    -1.22    -1.16 1.00     3707     2687
## neurot        0.14      0.01     0.11     0.17 1.00     3380     3106
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.27      0.01     0.25     0.29 1.00     3305     2764
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[5,6] <- extract_param2(m_rsd_d5_w, "b_neurot")

m_rsd_d6_w <- brm(logrsd_d6| weights(weight_d6) ~ neurot, data= people)
## Warning: Rows containing NAs were excluded from the model.
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 finished in 0.2 seconds.
## Chain 2 finished in 0.2 seconds.
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 finished in 0.2 seconds.
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 finished in 0.2 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.2 seconds.
## Total execution time: 0.4 seconds.
m_rsd_d6_w
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logrsd_d6 | weights(weight_d6) ~ neurot 
##    Data: people (Number of observations: 199) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -1.26      0.01    -1.29    -1.24 1.00     2992     2769
## neurot        0.02      0.01    -0.01     0.05 1.00     3655     3060
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.29      0.01     0.27     0.31 1.00     3340     2389
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[5,9] <- extract_param2(m_rsd_d6_w, "b_neurot")

5 SD

people$sd_Aff_d4 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary4$id) {
      people$sd_Aff_d4[i] <- sd(diary4$Affect_m[diary4$id == id$id[i]],
                                   na.rm = T)
    }
}

people$sd_Aff_d5 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary5$id) {
      people$sd_Aff_d5[i] <- sd(diary5$Affect_m[diary5$id == id$id[i]],
                                   na.rm = T)
    }
}

people$sd_Aff_d6 <- NA
for (i in 1:nrow(id)) {
  if (id$id[i] %in% diary6$id) {
      people$sd_Aff_d6[i] <- sd(diary6$Affect_m[diary6$id == id$id[i]],
                                   na.rm = T)
    }
}

people$sd_Aff_d4[people$sd_Aff_d4 == 0] <- NA   
people$sd_Aff_d5[people$sd_Aff_d5 == 0] <- NA   
people$sd_Aff_d6[people$sd_Aff_d6 == 0] <- NA   

people$logsd_d4 <- log(people$sd_Aff_d4)
people$logsd_d5 <- log(people$sd_Aff_d5)
people$logsd_d6 <- log(people$sd_Aff_d6)




mean(people$sd_Aff_d4)  
## [1] 0.5382563
mean(people$sd_Aff_d5)  
## [1] 0.4707706
mean(people$sd_Aff_d6, na.rm = T)  
## [1] 0.4663463

5.1 Regression with SD

m_sd_d4 <- brm(logsd_d4 ~ neurot, data= people, file = "logsd_d4")
m_sd_d4
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_d4 ~ neurot 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.69      0.03    -0.75    -0.64 1.00     3653     3210
## neurot        0.10      0.03     0.05     0.16 1.00     4425     3013
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.39      0.02     0.35     0.43 1.00     3546     2763
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[6,3] <- extract_param2(m_sd_d4, "b_neurot")


m_sd_d5 <- brm(logsd_d5 ~ neurot, data= people, file = "logsd_d5")
m_sd_d5
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_d5 ~ neurot 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.83      0.02    -0.87    -0.78 1.00     4555     3000
## neurot        0.20      0.02     0.15     0.24 1.00     4336     3143
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.32      0.02     0.30     0.36 1.00     4174     3072
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[6,6] <- extract_param2(m_sd_d5, "b_neurot")

m_sd_d6 <- brm(logsd_d6 ~ neurot, data= people, file = "logsd_d6")
## Warning: Rows containing NAs were excluded from the model.
m_sd_d6
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_d6 ~ neurot 
##    Data: people (Number of observations: 199) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.85      0.03    -0.90    -0.80 1.00     4239     2712
## neurot        0.22      0.03     0.16     0.27 1.00     4194     2685
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.36      0.02     0.33     0.40 1.00     4383     2702
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[6,9] <- extract_param2(m_sd_d6, "b_neurot")

5.2 Regression with SD + controlling for mean values of negative Emotion

m_sd_d4c <- brm(logsd_d4 ~ neurot + mean_Aff_d4, data= people)
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 1 finished in 0.0 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.0 seconds.
## Chain 4 finished in 0.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.0 seconds.
## Total execution time: 0.3 seconds.
m_sd_d4c
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_d4 ~ neurot + mean_Aff_d4 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept      -1.77      0.11    -1.98    -1.55 1.00     3469     2895
## neurot         -0.05      0.03    -0.11     0.00 1.00     3365     2864
## mean_Aff_d4     0.57      0.06     0.46     0.69 1.00     3404     3109
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.32      0.02     0.29     0.35 1.00     3638     2796
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[7,3] <- extract_param2(m_sd_d4c, "b_neurot")


m_sd_d5c <- brm(logsd_d5 ~ neurot + mean_Aff_d5, data= people)
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 1 finished in 0.0 seconds.
## Chain 2 finished in 0.0 seconds.
## Chain 3 finished in 0.0 seconds.
## Chain 4 finished in 0.0 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.0 seconds.
## Total execution time: 0.3 seconds.
m_sd_d5c
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_d5 ~ neurot + mean_Aff_d5 
##    Data: people (Number of observations: 200) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept      -1.69      0.09    -1.88    -1.52 1.00     4014     2781
## neurot          0.14      0.02     0.10     0.18 1.00     3775     2719
## mean_Aff_d5     0.50      0.05     0.40     0.61 1.00     3858     2699
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.27      0.01     0.24     0.30 1.00     3966     3036
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[7,6] <- extract_param2(m_sd_d5c, "b_neurot")

m_sd_d6c <- brm(logsd_d6 ~ neurot + mean_Aff_d6, data= people)
## Warning: Rows containing NAs were excluded from the model.
## Start sampling
## Running MCMC with 4 chains, at most 64 in parallel...
## 
## Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 3 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 3 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 3 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 3 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 3 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 2000 [  5%]  (Warmup) 
## Chain 4 Iteration:  200 / 2000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  300 / 2000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  400 / 2000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  500 / 2000 [ 25%]  (Warmup) 
## Chain 4 Iteration:  600 / 2000 [ 30%]  (Warmup) 
## Chain 4 Iteration:  700 / 2000 [ 35%]  (Warmup) 
## Chain 4 Iteration:  800 / 2000 [ 40%]  (Warmup) 
## Chain 4 Iteration:  900 / 2000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
## Chain 1 finished in 0.0 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.0 seconds.
## Chain 4 finished in 0.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.3 seconds.
m_sd_d6c
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: logsd_d6 ~ neurot + mean_Aff_d6 
##    Data: people (Number of observations: 199) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept      -1.79      0.12    -2.03    -1.55 1.00     2632     2984
## neurot          0.04      0.03    -0.02     0.10 1.00     2591     2613
## mean_Aff_d6     0.49      0.06     0.37     0.61 1.00     2617     2548
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.32      0.02     0.29     0.35 1.00     3329     2614
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
results_sim[7,9] <- extract_param2(m_sd_d6c, "b_neurot")
results_sim
##        model           w4_b_neuro        w4_b_neuro_sigma
## 1     model1                 <NA>                    <NA>
## 2     model2                 <NA>                    <NA>
## 3     model3 0.3397 0.2763 0.4040 -0.0538 -0.1046 -0.0022
## 4        RVI                 <NA> -0.0891 -0.1273 -0.0504
## 5 RVI_weight                 <NA> -0.0779 -0.1043 -0.0500
## 6         SD                 <NA>    0.1012 0.0461 0.1571
## 7        SD*                 <NA>  -0.0532 -0.1085 0.0026
##                  w4_sigma           w5_b_neuro     w5_b_neuro_sigma
## 1                    <NA>                 <NA>                 <NA>
## 2                    <NA>                 <NA>                 <NA>
## 3 -0.5331 -0.5815 -0.4853 0.1102 0.0546 0.1682 0.1900 0.1447 0.2358
## 4                    <NA>                 <NA> 0.1191 0.0828 0.1547
## 5                    <NA>                 <NA> 0.1415 0.1146 0.1680
## 6                    <NA>                 <NA> 0.1976 0.1516 0.2437
## 7                    <NA>                 <NA> 0.1404 0.1007 0.1810
##                  w5_sigma           w6_b_neuro       w6_b_neuro_sigma
## 1                    <NA>                 <NA>                   <NA>
## 2                    <NA>                 <NA>                   <NA>
## 3 -0.7119 -0.7567 -0.6686 0.4149 0.3566 0.4726   0.0977 0.0476 0.1479
## 4                    <NA>                 <NA> -0.0195 -0.0627 0.0220
## 5                    <NA>                 <NA>  0.0219 -0.0051 0.0489
## 6                    <NA>                 <NA>   0.2180 0.1643 0.2704
## 7                    <NA>                 <NA>  0.0387 -0.0249 0.1042
##                  w6_sigma
## 1                    <NA>
## 2                    <NA>
## 3 -0.7416 -0.7887 -0.6946
## 4                    <NA>
## 5                    <NA>
## 6                    <NA>
## 7                    <NA>
library("writexl")
write_xlsx(results_sim,"results_sim2.xlsx")

6 Plot Simulaion

apatheme = theme_bw() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_blank(),
        panel.border = element_blank(),
        text=element_text(family='Arial'),
        legend.title=element_blank(),
        legend.position=c(.7,.8),
        axis.line.x = element_line(color='black'),
        axis.line.y = element_line(color='black'))

#getwd()

#results_sim <- read_xlsx("~/results_sim2.xlsx")
results_sim2 <- results_sim 

results_sim2$w4_sigma <- NULL
results_sim2$w5_sigma <- NULL
results_sim2$w6_sigma <- NULL


results_sim2 <- results_sim2 %>% 
  tidyr::separate(w4_b_neuro_sigma,                      
                  c("w4_b_neuro_sigma","lowerw4", "upperw4"), sep = " ")


results_sim2 <- results_sim2 %>% 
  tidyr::separate(w5_b_neuro_sigma,                      
                  c("w5_b_neuro_sigma", "lowerw5", "upperw5"), sep = " ")


results_sim2 <- results_sim2 %>% 
  tidyr::separate(w6_b_neuro_sigma,                      
                  c("w6_b_neuro_sigma", "lowerw6", "upperw6"), sep = " ")


resultsw4sig <- results_sim2
resultsw4sig <- resultsw4sig[-c(1,2), ]
resultsw4sig <- resultsw4sig[-6, ]
resultsw4sig[1,1] <- "BCLSM"
resultsw4sig[3,1] <- "weighted RVI"


resultsw4sig$w4_b_neuro_sigma <- as.numeric(resultsw4sig$w4_b_neuro_sigma )
resultsw4sig$w5_b_neuro_sigma <- as.numeric(resultsw4sig$w5_b_neuro_sigma )
resultsw4sig$w6_b_neuro_sigma <- as.numeric(resultsw4sig$w6_b_neuro_sigma )

resultsw4sig$lowerw4 <- as.numeric(resultsw4sig$lowerw4 )
resultsw4sig$upperw4 <- as.numeric(resultsw4sig$upperw4 )

resultsw4sig$lowerw5 <- as.numeric(resultsw4sig$lowerw5 )
resultsw4sig$upperw5 <- as.numeric(resultsw4sig$upperw5 )

resultsw4sig$lowerw6 <- as.numeric(resultsw4sig$lowerw6 )
resultsw4sig$upperw6 <- as.numeric(resultsw4sig$upperw6 )

resultsw4sig$model <- as.character(resultsw4sig$model)
resultsw4sig$model <- factor(resultsw4sig$model, levels=unique(resultsw4sig$model))


w4sig <- ggplot(resultsw4sig, aes(x=model , y = w4_b_neuro_sigma))+ geom_point() +
  geom_hline(yintercept=0, linetype='dotted', col = 'black') +
  labs(x = " Statistical Approach", y = "b estimates")+ ggtitle("Negative Emotion")

w4sig+apatheme + geom_errorbar(aes(ymin = lowerw4, ymax = upperw4), width = 0.2)+coord_cartesian(ylim = c(-0.40, 0.5))+theme(plot.title = element_text(hjust = 0.5))

ggsave("w4skew.png", width = 4, height = 3)


w5sig <- ggplot(resultsw4sig, aes(x=model , y = w5_b_neuro_sigma))+ geom_point() +
  geom_hline(yintercept= 0.15, linetype='dotted', col = 'black') +
  labs(x = "Statistical Approach", y = "b estimates") + geom_errorbar(aes(ymin = lowerw5, ymax = upperw5), width = 0.2)+ ggtitle("Negative Emotion")

w5sig + apatheme +coord_cartesian(ylim = c(-0.20, 0.4))+theme(plot.title = element_text(hjust = 0.5))

ggsave("w5skew.png", width = 4, height = 3)

w6sig <- ggplot(resultsw4sig, aes(x=model , y = w6_b_neuro_sigma))+ geom_point() +
  geom_hline(yintercept= 0.15, linetype='dotted', col = 'black') +
  labs(x = "Statistical Approach", y = "b estimates") + geom_errorbar(aes(ymin = lowerw6, ymax = upperw6), width = 0.2)+ ggtitle("Negative Emotion")

w6sig + apatheme +coord_cartesian(ylim = c(-0.30, 0.5))+theme(plot.title = element_text(hjust = 0.5))

ggsave("w6skew.png", width = 4, height = 3)