library(labelled)
library(codebook)
library(tidyverse)
knitr::opts_chunk$set(
warning = FALSE, # show warnings during codebook generation
message = FALSE, # show messages during codebook generation
error = TRUE, # do not interrupt codebook generation in case of errors,
# usually makes debugging easier, and sometimes half a codebook
# is better than none
echo = FALSE # don't show the R code
)
ggplot2::theme_set(ggplot2::theme_bw())
Dataset name: vcs
The dataset has N=2241 rows and 21 columns. 969 rows have no missing values on any column.
|
#Variables
Distribution of values for voice_id
0 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
voice_id | numeric | 0 | 1 | 1 | 1121 | 2241 | 1121 | 647.0653 | ▇▇▇▇▇ | NA |
Distribution of values for dataset
0 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
dataset | numeric | 0 | 1 | 1 | 4 | 11 | 4.531905 | 2.864653 | ▇▃▃▂▁ | NA |
Sex
Distribution of values for sex
0 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
sex | Sex | haven_labelled | 0 | 1 | -1 | -1 | 1 | -0.1726908 | 0.9851959 | 2 | ▇▁▁▁▁▁▁▆ |
name | value |
---|---|
male | 1 |
female | -1 |
Age
Distribution of values for age
137 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
age | Age | numeric | 137 | 0.9388666 | 18 | 23 | 56 | 24.452 | 6.138718 | ▇▂▁▁▁ |
Voice pitch
Distribution of values for f0
7 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
f0 | Voice pitch | numeric | 7 | 0.9968764 | -1.8 | 0.39 | 2.6 | 0 | 1 | ▇▂▇▆▁ |
Distribution of values for f1
4 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
f1 | numeric | 4 | 0.9982151 | -2.3 | -0.03 | 6.7 | 0 | 1 | ▅▇▁▁▁ | NA |
Distribution of values for f2
4 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
f2 | numeric | 4 | 0.9982151 | -3 | 0.023 | 5.2 | 0 | 1 | ▁▇▆▁▁ | NA |
Distribution of values for f3
4 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
f3 | numeric | 4 | 0.9982151 | -2.3 | 0.12 | 3.2 | 0 | 1 | ▃▆▇▃▁ | NA |
Distribution of values for f4
4 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
f4 | numeric | 4 | 0.9982151 | -2.8 | 0.2 | 2.7 | 0 | 1 | ▁▇▅▇▁ | NA |
Formants
Distribution of values for pf
4 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
pf | Formants | numeric | 4 | 0.9982151 | -2.1 | 0.053 | 4.4 | 0 | 1 | ▆▇▇▁▁ |
Neuroticism
Distribution of values for neuro
802 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
neuro | Neuroticism | numeric | 802 | 0.6421241 | -2.4 | 0.00029 | 2.5 | 0 | 1 | ▂▆▇▅▂ |
Extraversion
Distribution of values for extra
803 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
extra | Extraversion | numeric | 803 | 0.6416778 | -3.2 | 0.036 | 2.2 | 0 | 1 | ▁▃▇▇▃ |
Openness
Distribution of values for openn
802 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
openn | Openness | numeric | 802 | 0.6421241 | -4.1 | 0.097 | 2.1 | 0 | 1 | ▁▁▅▇▃ |
Agreeableness
Distribution of values for agree
802 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
agree | Agreeableness | numeric | 802 | 0.6421241 | -3.4 | 0.037 | 2.2 | 0 | 1 | ▁▂▇▇▃ |
Conscientiousness
Distribution of values for consc
802 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
consc | Conscientiousness | numeric | 802 | 0.6421241 | -3.4 | 0.053 | 2.2 | 0 | 1 | ▁▂▇▇▃ |
Dominance
Distribution of values for dominance
1256 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
dominance | Dominance | numeric | 1256 | 0.4395359 | -3.7 | 0.053 | 2.6 | 0 | 1 | ▁▂▇▆▂ |
Distribution of values for behavior
242 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
behavior | numeric | 242 | 0.8920125 | -1.1 | -0.27 | 3 | 0 | 1 | ▇▃▃▁▁ | NA |
Distribution of values for attitude
239 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
attitude | numeric | 239 | 0.8933512 | -1.9 | 0.058 | 1.5 | 0 | 1 | ▅▅▆▆▇ | NA |
Distribution of values for desire
238 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
desire | numeric | 238 | 0.8937974 | -1.8 | -0.095 | 2.2 | 0 | 1 | ▆▇▇▅▂ | NA |
Unrestricted sociosexuality
Distribution of values for soir_full
243 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
soir_full | Unrestricted sociosexuality | numeric | 243 | 0.8915663 | -2.1 | 0.017 | 2.8 | 0 | 1 | ▅▇▇▅▁ |
Distribution of values for sex_c
0 missing values.
name | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist | label |
---|---|---|---|---|---|---|---|---|---|---|
sex_c | numeric | 0 | 1 | -1 | -1 | 1 | -0.1726908 | 0.9851959 | ▇▁▁▁▆ | NA |
The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.
{
"name": "vcs",
"datePublished": "2021-04-10",
"description": "The dataset has N=2241 rows and 21 columns.\n969 rows have no missing values on any column.\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n|name |label | n_missing|\n|:---------|:---------------------------|---------:|\n|voice_id |NA | 0|\n|dataset |NA | 0|\n|sex |Sex | 0|\n|age |Age | 137|\n|f0 |Voice pitch | 7|\n|f1 |NA | 4|\n|f2 |NA | 4|\n|f3 |NA | 4|\n|f4 |NA | 4|\n|pf |Formants | 4|\n|neuro |Neuroticism | 802|\n|extra |Extraversion | 803|\n|openn |Openness | 802|\n|agree |Agreeableness | 802|\n|consc |Conscientiousness | 802|\n|dominance |Dominance | 1256|\n|behavior |NA | 242|\n|attitude |NA | 239|\n|desire |NA | 238|\n|soir_full |Unrestricted sociosexuality | 243|\n|sex_c |NA | 0|\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.9.3).",
"keywords": ["voice_id", "dataset", "sex", "age", "f0", "f1", "f2", "f3", "f4", "pf", "neuro", "extra", "openn", "agree", "consc", "dominance", "behavior", "attitude", "desire", "soir_full", "sex_c"],
"@context": "http://schema.org/",
"@type": "Dataset",
"variableMeasured": [
{
"name": "voice_id",
"@type": "propertyValue"
},
{
"name": "dataset",
"@type": "propertyValue"
},
{
"name": "sex",
"description": "Sex",
"value": "1. male,\n-1. female",
"maxValue": 1,
"minValue": -1,
"@type": "propertyValue"
},
{
"name": "age",
"description": "Age",
"@type": "propertyValue"
},
{
"name": "f0",
"description": "Voice pitch",
"@type": "propertyValue"
},
{
"name": "f1",
"@type": "propertyValue"
},
{
"name": "f2",
"@type": "propertyValue"
},
{
"name": "f3",
"@type": "propertyValue"
},
{
"name": "f4",
"@type": "propertyValue"
},
{
"name": "pf",
"description": "Formants",
"@type": "propertyValue"
},
{
"name": "neuro",
"description": "Neuroticism",
"@type": "propertyValue"
},
{
"name": "extra",
"description": "Extraversion",
"@type": "propertyValue"
},
{
"name": "openn",
"description": "Openness",
"@type": "propertyValue"
},
{
"name": "agree",
"description": "Agreeableness",
"@type": "propertyValue"
},
{
"name": "consc",
"description": "Conscientiousness",
"@type": "propertyValue"
},
{
"name": "dominance",
"description": "Dominance",
"@type": "propertyValue"
},
{
"name": "behavior",
"@type": "propertyValue"
},
{
"name": "attitude",
"@type": "propertyValue"
},
{
"name": "desire",
"@type": "propertyValue"
},
{
"name": "soir_full",
"description": "Unrestricted sociosexuality",
"@type": "propertyValue"
},
{
"name": "sex_c",
"@type": "propertyValue"
}
]
}`
library(ggstatsplot)
## In case you would like cite this package, cite it as:
## Patil, I. (2018). ggstatsplot: "ggplot2" Based Plots with Statistical Details. CRAN.
## Retrieved from https://cran.r-project.org/web/packages/ggstatsplot/index.html
vcs <- vcs %>% filter(!is.na(f0), !is.na(pf), !is.na(age))
vcs$sex <- factor(if_else(vcs$sex_c == 1, "male", "female"))
contrasts(vcs$sex) <- contr.helmert(2)
var_label(vcs$sex) <- "Sex"
ggbetweenstats(vcs, sex, age) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, f0) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, pf) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, dominance) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, extra) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, neuro) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, consc) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, agree) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, openn) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, soir_full) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, behavior) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, attitude) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggbetweenstats(vcs, sex, desire) +
scale_color_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## Warning: Ignoring unknown parameters: segment.linetype
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
ggplot(vcs, aes(f0, fill = sex)) +
geom_histogram(position = "identity", alpha = 0.4)+
scale_fill_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(pf, fill = sex)) +
geom_histogram(position = "identity", alpha = 0.4)+
scale_fill_viridis_d("Sex", breaks = c(-1,1), labels = c("female", "male"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(f0, fill = factor(dataset))) +
geom_histogram(position = "stack", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(pf, fill = factor(dataset))) +
geom_histogram(position = "stack", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(pf, fill = factor(dataset))) +
geom_histogram(position = "identity", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(f1, fill = factor(dataset))) +
geom_histogram(position = "identity", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(f2, fill = factor(dataset))) +
geom_histogram(position = "identity", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(f3, fill = factor(dataset))) +
geom_histogram(position = "identity", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(f4, fill = factor(dataset))) +
geom_histogram(position = "identity", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(vcs, aes(pf, fill = factor(dataset))) +
geom_histogram(position = "stack", alpha = 0.4)+
facet_wrap(~ sex) +
scale_fill_viridis_d()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggscatterstats(vcs, age, f0)
ggscatterstats(vcs, age, pf)
ggscatterstats(vcs, age, dominance)
ggscatterstats(vcs, age, extra)
ggscatterstats(vcs, age, neuro)
ggscatterstats(vcs, age, consc)
ggscatterstats(vcs, age, agree)
ggscatterstats(vcs, age, openn)
ggscatterstats(vcs, age, soir_full)
ggscatterstats(vcs, age, behavior)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
vcs %>% select(sex_c, age, f0, pf, f1:f4) %>% cor(use = 'pairwise') %>% round(2) %>% kable(caption = "Correlations between sex, age, and voice parameters.")
sex_c | age | f0 | pf | f1 | f2 | f3 | f4 | |
---|---|---|---|---|---|---|---|---|
sex_c | 1.00 | 0.20 | -0.93 | -0.80 | -0.26 | -0.60 | -0.83 | -0.86 |
age | 0.20 | 1.00 | -0.23 | -0.03 | 0.06 | -0.01 | -0.08 | -0.08 |
f0 | -0.93 | -0.23 | 1.00 | 0.75 | 0.24 | 0.56 | 0.79 | 0.82 |
pf | -0.80 | -0.03 | 0.75 | 1.00 | 0.59 | 0.81 | 0.91 | 0.88 |
f1 | -0.26 | 0.06 | 0.24 | 0.59 | 1.00 | 0.22 | 0.34 | 0.30 |
f2 | -0.60 | -0.01 | 0.56 | 0.81 | 0.22 | 1.00 | 0.71 | 0.66 |
f3 | -0.83 | -0.08 | 0.79 | 0.91 | 0.34 | 0.71 | 1.00 | 0.87 |
f4 | -0.86 | -0.08 | 0.82 | 0.88 | 0.30 | 0.66 | 0.87 | 1.00 |
vcs %>% select(sex_c, age, neuro:soir_full) %>% cor(use = 'pairwise') %>% round(2) %>% kable(caption = "Correlations between sex, age, and personality variables")
sex_c | age | neuro | extra | openn | agree | consc | dominance | behavior | attitude | desire | soir_full | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
sex_c | 1.00 | 0.20 | -0.26 | -0.09 | -0.01 | -0.13 | -0.12 | -0.03 | 0.03 | 0.24 | 0.36 | 0.27 |
age | 0.20 | 1.00 | -0.12 | -0.04 | 0.05 | 0.09 | 0.15 | -0.12 | 0.30 | 0.04 | 0.10 | 0.18 |
neuro | -0.26 | -0.12 | 1.00 | -0.23 | -0.03 | -0.20 | -0.26 | -0.33 | -0.10 | -0.08 | -0.08 | -0.11 |
extra | -0.09 | -0.04 | -0.23 | 1.00 | 0.26 | 0.12 | 0.22 | 0.51 | 0.20 | 0.06 | 0.03 | 0.12 |
openn | -0.01 | 0.05 | -0.03 | 0.26 | 1.00 | 0.02 | 0.08 | 0.10 | 0.05 | 0.03 | 0.07 | 0.06 |
agree | -0.13 | 0.09 | -0.20 | 0.12 | 0.02 | 1.00 | 0.23 | -0.22 | 0.01 | -0.11 | -0.06 | -0.07 |
consc | -0.12 | 0.15 | -0.26 | 0.22 | 0.08 | 0.23 | 1.00 | 0.20 | 0.05 | -0.12 | -0.07 | -0.06 |
dominance | -0.03 | -0.12 | -0.33 | 0.51 | 0.10 | -0.22 | 0.20 | 1.00 | 0.09 | 0.07 | -0.02 | 0.06 |
behavior | 0.03 | 0.30 | -0.10 | 0.20 | 0.05 | 0.01 | 0.05 | 0.09 | 1.00 | 0.48 | 0.33 | 0.76 |
attitude | 0.24 | 0.04 | -0.08 | 0.06 | 0.03 | -0.11 | -0.12 | 0.07 | 0.48 | 1.00 | 0.45 | 0.85 |
desire | 0.36 | 0.10 | -0.08 | 0.03 | 0.07 | -0.06 | -0.07 | -0.02 | 0.33 | 0.45 | 1.00 | 0.75 |
soir_full | 0.27 | 0.18 | -0.11 | 0.12 | 0.06 | -0.07 | -0.06 | 0.06 | 0.76 | 0.85 | 0.75 | 1.00 |
vcs %>% select( sex_c, everything(), -voice_id, -dataset, -sex) %>% cor(use = 'pairwise') %>% round(2) %>% kable(caption = "All correlations")
sex_c | age | f0 | f1 | f2 | f3 | f4 | pf | neuro | extra | openn | agree | consc | dominance | behavior | attitude | desire | soir_full | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sex_c | 1.00 | 0.20 | -0.93 | -0.26 | -0.60 | -0.83 | -0.86 | -0.80 | -0.26 | -0.09 | -0.01 | -0.13 | -0.12 | -0.03 | 0.03 | 0.24 | 0.36 | 0.27 |
age | 0.20 | 1.00 | -0.23 | 0.06 | -0.01 | -0.08 | -0.08 | -0.03 | -0.12 | -0.04 | 0.05 | 0.09 | 0.15 | -0.12 | 0.30 | 0.04 | 0.10 | 0.18 |
f0 | -0.93 | -0.23 | 1.00 | 0.24 | 0.56 | 0.79 | 0.82 | 0.75 | 0.27 | 0.06 | -0.01 | 0.11 | 0.10 | 0.01 | -0.07 | -0.24 | -0.36 | -0.29 |
f1 | -0.26 | 0.06 | 0.24 | 1.00 | 0.22 | 0.34 | 0.30 | 0.59 | -0.02 | 0.09 | 0.07 | -0.03 | 0.07 | -0.02 | -0.01 | -0.09 | -0.09 | -0.08 |
f2 | -0.60 | -0.01 | 0.56 | 0.22 | 1.00 | 0.71 | 0.66 | 0.81 | 0.10 | 0.09 | 0.02 | 0.14 | 0.15 | -0.04 | 0.02 | -0.22 | -0.26 | -0.20 |
f3 | -0.83 | -0.08 | 0.79 | 0.34 | 0.71 | 1.00 | 0.87 | 0.91 | 0.18 | 0.09 | 0.04 | 0.16 | 0.16 | -0.03 | 0.01 | -0.21 | -0.27 | -0.20 |
f4 | -0.86 | -0.08 | 0.82 | 0.30 | 0.66 | 0.87 | 1.00 | 0.88 | 0.22 | 0.07 | 0.01 | 0.13 | 0.14 | -0.01 | 0.01 | -0.20 | -0.29 | -0.21 |
pf | -0.80 | -0.03 | 0.75 | 0.59 | 0.81 | 0.91 | 0.88 | 1.00 | 0.15 | 0.11 | 0.04 | 0.13 | 0.17 | -0.03 | 0.01 | -0.22 | -0.28 | -0.22 |
neuro | -0.26 | -0.12 | 0.27 | -0.02 | 0.10 | 0.18 | 0.22 | 0.15 | 1.00 | -0.23 | -0.03 | -0.20 | -0.26 | -0.33 | -0.10 | -0.08 | -0.08 | -0.11 |
extra | -0.09 | -0.04 | 0.06 | 0.09 | 0.09 | 0.09 | 0.07 | 0.11 | -0.23 | 1.00 | 0.26 | 0.12 | 0.22 | 0.51 | 0.20 | 0.06 | 0.03 | 0.12 |
openn | -0.01 | 0.05 | -0.01 | 0.07 | 0.02 | 0.04 | 0.01 | 0.04 | -0.03 | 0.26 | 1.00 | 0.02 | 0.08 | 0.10 | 0.05 | 0.03 | 0.07 | 0.06 |
agree | -0.13 | 0.09 | 0.11 | -0.03 | 0.14 | 0.16 | 0.13 | 0.13 | -0.20 | 0.12 | 0.02 | 1.00 | 0.23 | -0.22 | 0.01 | -0.11 | -0.06 | -0.07 |
consc | -0.12 | 0.15 | 0.10 | 0.07 | 0.15 | 0.16 | 0.14 | 0.17 | -0.26 | 0.22 | 0.08 | 0.23 | 1.00 | 0.20 | 0.05 | -0.12 | -0.07 | -0.06 |
dominance | -0.03 | -0.12 | 0.01 | -0.02 | -0.04 | -0.03 | -0.01 | -0.03 | -0.33 | 0.51 | 0.10 | -0.22 | 0.20 | 1.00 | 0.09 | 0.07 | -0.02 | 0.06 |
behavior | 0.03 | 0.30 | -0.07 | -0.01 | 0.02 | 0.01 | 0.01 | 0.01 | -0.10 | 0.20 | 0.05 | 0.01 | 0.05 | 0.09 | 1.00 | 0.48 | 0.33 | 0.76 |
attitude | 0.24 | 0.04 | -0.24 | -0.09 | -0.22 | -0.21 | -0.20 | -0.22 | -0.08 | 0.06 | 0.03 | -0.11 | -0.12 | 0.07 | 0.48 | 1.00 | 0.45 | 0.85 |
desire | 0.36 | 0.10 | -0.36 | -0.09 | -0.26 | -0.27 | -0.29 | -0.28 | -0.08 | 0.03 | 0.07 | -0.06 | -0.07 | -0.02 | 0.33 | 0.45 | 1.00 | 0.75 |
soir_full | 0.27 | 0.18 | -0.29 | -0.08 | -0.20 | -0.20 | -0.21 | -0.22 | -0.11 | 0.12 | 0.06 | -0.07 | -0.06 | 0.06 | 0.76 | 0.85 | 0.75 | 1.00 |
cors <- vcs %>% select(sex_c, age, f0, dominance, extra, agree, behavior) %>% cor(use = 'pairwise') %>% round(2)
cors_sex_partialled_out <- vcs %>% select(sex_c, age, f0, dominance, extra, agree, behavior) %>% mutate_at(vars(age, f0, dominance, extra, agree, behavior), ~resid(lm(. ~ sex_c, na.action = na.exclude))) %>% cor(use = 'pairwise') %>% round(2)
cors[upper.tri(cors)] <- cors_sex_partialled_out[upper.tri(cors_sex_partialled_out)]
cors %>% kable(caption = "Correlations between sex, age, f0, and preregistered outcomes. Correlations above the diagonal are after partialling out effects of gender.")
sex_c | age | f0 | dominance | extra | agree | behavior | |
---|---|---|---|---|---|---|---|
sex_c | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
age | 0.20 | 1.00 | -0.12 | -0.12 | -0.03 | 0.11 | 0.30 |
f0 | -0.93 | -0.23 | 1.00 | -0.05 | -0.06 | -0.02 | -0.11 |
dominance | -0.03 | -0.12 | 0.01 | 1.00 | 0.51 | -0.22 | 0.10 |
extra | -0.09 | -0.04 | 0.06 | 0.51 | 1.00 | 0.11 | 0.20 |
agree | -0.13 | 0.09 | 0.11 | -0.22 | 0.12 | 1.00 | 0.01 |
behavior | 0.03 | 0.30 | -0.07 | 0.09 | 0.20 | 0.01 | 1.00 |