# including only those who survived infancy
library(dplyr); library(brms)
setwd("/usr/users/rarslan/updated_data/")
args = commandArgs()
dataset = args[6]
uptobyear = args[7]
load(paste0(dataset, ".rdata"))
model_data = get(paste0(dataset, ".1")) %>% tbl_df %>%
filter(byear < uptobyear) %>%
select(survive1y, birth_cohort, male, maternalage.factor, paternalage.mean, paternalage, paternal_loss, maternal_loss, older_siblings, nr.siblings, last_born, idParents) %>%
na.omit()
if (dataset == "swed_subset_survival") {
# switched the factor reference from later than 45 to unclear, because censoring means parental deaths later than age 45 are recorded as unclear/unknown
model_data$maternal_loss = relevel(model_data$maternal_loss, ref = "unclear")
model_data$paternal_loss = relevel(model_data$paternal_loss, ref = "unclear")
dataset = "swed"
}
model = brm( survive1y ~ paternalage + birth_cohort + male + maternalage.factor + paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 | idParents),
prior = c(set_prior("normal(0,5)", class = "b"),
set_prior("student_t(3, 0, 5)", class = "sd")),
family = bernoulli(link = "cauchit"), data = model_data,
chains = 6, iter = 1000, warmup = 500, cores = 6, ranef = FALSE)
summary(model)
saveRDS(model,file = paste0("coefs/", dataset, "/e1_survive1y.rds"))