Cycling women (not on hormonal birth control)
Women on hormonal birth control
library(knitr)
opts_chunk$set(fig.width = 8, fig.height = 8, cache = F, warning = F, message = F)
library(xlsx); library(formr); library(data.table); library(stringr); library(ggplot2); library(plyr); library(car); library(psych); library(brms);
source("0_helpers.R")
load("full_data.rdata")
diary$extra_pair_intimacy_sex = diary$extra_pair_sex + diary$extra_pair_intimacy
twice = c("1" = 1, "2" = 2, "3" = 0)
diary$sexual_intercourse_2 = twice[diary$sexual_intercourse_2]
diary$sexual_intercourse_5 = twice[diary$sexual_intercourse_5]
diary$mate_retention_2 = twice[diary$mate_retention_2]
diary$relationship_satisfaction_1 = as.integer(diary$relationship_satisfaction_1)
diary$sexual_intercourse_satisfaction = as.integer(diary$sexual_intercourse_satisfaction)
items = xlsx::read.xlsx("item_tables/Taeglicher_Fragebogen_1-v3.xls", 1)
items_engl = xlsx::read.xlsx("item_tables/Daily_items_bearbeitetAM.xlsx", 1)
outcomes = list.files("by_item",full.names = T)
fertile_eff_by_item = list()
for (i in 1:length(outcomes)) {
tryCatch({
fit = readRDS(outcomes[i])
outcome = all.vars(fit$formula$formula)[1]
label = items %>%
filter(name == outcome) %>%
select(label, starts_with("choice"))
label_eng = items_engl %>%
filter(Item.name == outcome) %>%
select(Item) %>% .[[1]]
cat("\n\n\n##", outcome, "\n\n\n")
cat(paste0("### Item text: \n\n__", label$label, "__\n\n\n"))
cat(paste0("### Item translation: \n\n__", label_eng, "__\n\n\n"))
cat("\n\n\n### Choices: {.accordion} \n\n\n")
freqs = diary %>%
select(one_of(outcome)) %>%
table(exclude = NULL) %>%
as.data.frame()
names(freqs) = c("choice", "frequency")
freqs$choice = as.character(freqs$choice)
label %>%
select(-label) %>%
gather(choice, value) %>%
mutate(choice = stringr::str_sub(choice, 7)) %>%
right_join(freqs, by = "choice") %>%
filter(!is.na(choice)) %>%
mutate(percent = round(frequency/sum(frequency),2)) %>%
pander() %>%
cat()
print(
ggplot(diary, aes_string(x = paste0("factor(",outcome,")"))) +
scale_x_discrete(outcome) +
geom_bar(na.rm = T)
)
coefs = fixef(fit, estimate = c("mean", "sd", "quantile"), probs = c(0.005, 0.025, 0.1, 0.2, 0.8, 0.9, 0.975, 0.995), old = T)
coefs = coefs %>% data.frame() %>% tibble::rownames_to_column("term") %>% filter(term %in% c("fertile", "includedhorm_contra:fertile"))
if (nrow(coefs) > 0) {
coefs$outcome = outcome
if (nrow(label) ) {
coefs$label = label$label
}
fertile_eff_by_item[[i]] = coefs
}
cat("\n\n\n### Model {.tab-content} \n\n\n")
cat("\n\n\n#### Model summary \n\n\n")
print_summary(fit)
tryCatch({
cat("\n\n\n#### Coefficient plot\n\n\n")
print(stanplot(fit, pars = "^b_[^I]") + geom_vline(xintercept = 0, linetype = 'dashed'))
}, error = function(e) warning(e))
tryCatch({
cat("\n\n\n#### Marginal effect plots\n\n\n")
marginal_effects_pass(fit)
}, error = function(e) warning(e))
tryCatch({
cat("\n\n\n#### Diagnostics\n\n\n")
print(pp_check(fit))
}, error = function(e) warning(e))
}, error = function(e){cat_message(e, "danger")})
}
… habe ich meinem Partner gezeigt, dass er mir wichtig ist.
41. I showed my partner that he is important to me.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 2950 | 0.1 |
2 | Stimme überwiegend nicht zu | 1413 | 0.05 |
3 | Stimme eher nicht zu | 3069 | 0.1 |
4 | Stimme eher zu | 7681 | 0.26 |
5 | Stimme überwiegend zu | 7269 | 0.24 |
6 | Stimme voll zu | 7492 | 0.25 |
Family: cumulative(logit)
Formula: attention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 74193.79; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.69 0.05 1.59 1.79 563 1.01
sd(fertile) 1.53 0.12 1.29 1.76 564 1.00
sd(menstruationpre) 0.71 0.06 0.59 0.83 614 1.00
sd(menstruationyes) 0.73 0.06 0.61 0.85 618 1.00
cor(Intercept,fertile) -0.24 0.07 -0.36 -0.10 1476 1.00
cor(Intercept,menstruationpre) -0.12 0.08 -0.26 0.04 1357 1.00
cor(fertile,menstruationpre) 0.34 0.10 0.13 0.52 443 1.00
cor(Intercept,menstruationyes) -0.17 0.07 -0.31 -0.03 1441 1.00
cor(fertile,menstruationyes) 0.39 0.09 0.19 0.56 550 1.00
cor(menstruationpre,menstruationyes) 0.54 0.09 0.35 0.70 518 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -2.93 0.13 -3.19 -2.67 624 1.01
Intercept[2] -2.35 0.13 -2.60 -2.10 622 1.01
Intercept[3] -1.46 0.13 -1.71 -1.21 621 1.01
Intercept[4] 0.15 0.13 -0.10 0.40 620 1.01
Intercept[5] 1.71 0.13 1.46 1.96 622 1.01
includedhorm_contra 0.28 0.12 0.04 0.51 420 1.01
menstruationpre 0.05 0.07 -0.09 0.19 1224 1.00
menstruationyes 0.05 0.07 -0.08 0.19 1190 1.00
fertile 0.17 0.15 -0.12 0.46 1293 1.00
fertile_mean -0.16 0.55 -1.24 0.90 1076 1.00
includedhorm_contra:menstruationpre -0.10 0.09 -0.28 0.08 1195 1.00
includedhorm_contra:menstruationyes -0.02 0.09 -0.20 0.16 1164 1.00
includedhorm_contra:fertile -0.40 0.19 -0.78 -0.03 1184 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich meinem Partner gezeigt, dass ich mich von ihm sexuell angezogen fühle.
42. I showed my partner that I was sexually attracted to him.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 7785 | 0.26 |
2 | Stimme überwiegend nicht zu | 3194 | 0.11 |
3 | Stimme eher nicht zu | 4982 | 0.17 |
4 | Stimme eher zu | 5502 | 0.18 |
5 | Stimme überwiegend zu | 4166 | 0.14 |
6 | Stimme voll zu | 4245 | 0.14 |
Family: cumulative(logit)
Formula: attention_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 83451.19; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.47 0.05 1.38 1.56 1188 1.00
sd(fertile) 1.66 0.11 1.44 1.89 774 1.00
sd(menstruationpre) 0.63 0.06 0.51 0.76 645 1.01
sd(menstruationyes) 0.65 0.06 0.54 0.77 731 1.01
cor(Intercept,fertile) -0.27 0.06 -0.40 -0.14 1911 1.00
cor(Intercept,menstruationpre) -0.21 0.08 -0.37 -0.05 2237 1.00
cor(fertile,menstruationpre) 0.37 0.10 0.17 0.55 718 1.01
cor(Intercept,menstruationyes) -0.22 0.08 -0.37 -0.07 2266 1.00
cor(fertile,menstruationyes) 0.25 0.10 0.06 0.43 559 1.01
cor(menstruationpre,menstruationyes) 0.31 0.12 0.06 0.52 480 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.30 0.12 -1.53 -1.06 773 1.00
Intercept[2] -0.62 0.12 -0.85 -0.39 769 1.00
Intercept[3] 0.29 0.12 0.07 0.53 773 1.00
Intercept[4] 1.33 0.12 1.11 1.58 780 1.00
Intercept[5] 2.41 0.12 2.18 2.66 788 1.00
includedhorm_contra 0.25 0.11 0.03 0.46 604 1.01
menstruationpre -0.07 0.07 -0.21 0.06 2105 1.00
menstruationyes -0.27 0.07 -0.40 -0.14 1932 1.00
fertile 0.32 0.15 0.03 0.60 1667 1.00
fertile_mean -0.16 0.50 -1.18 0.84 1211 1.00
includedhorm_contra:menstruationpre 0.01 0.09 -0.15 0.17 2172 1.00
includedhorm_contra:menstruationyes 0.05 0.09 -0.12 0.22 2014 1.00
includedhorm_contra:fertile -0.62 0.19 -0.98 -0.27 1486 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Seriös
16. respectable
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 6472 | 0.22 |
2 | Stimme überwiegend nicht zu | 3381 | 0.11 |
3 | Stimme eher nicht zu | 5966 | 0.2 |
4 | Stimme eher zu | 7768 | 0.26 |
5 | Stimme überwiegend zu | 4545 | 0.15 |
6 | Stimme voll zu | 1764 | 0.06 |
Family: cumulative(logit)
Formula: choice_of_clothing_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26562)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 77486.23; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.67 0.05 1.57 1.77 362 1.00
sd(fertile) 1.10 0.12 0.86 1.35 278 1.01
sd(menstruationpre) 0.20 0.13 0.01 0.46 86 1.04
sd(menstruationyes) 0.51 0.07 0.37 0.63 341 1.00
cor(Intercept,fertile) -0.22 0.08 -0.38 -0.04 710 1.00
cor(Intercept,menstruationpre) -0.13 0.29 -0.72 0.58 1408 1.00
cor(fertile,menstruationpre) 0.10 0.36 -0.70 0.74 370 1.01
cor(Intercept,menstruationyes) -0.01 0.10 -0.19 0.19 1589 1.00
cor(fertile,menstruationyes) 0.20 0.16 -0.12 0.48 309 1.01
cor(menstruationpre,menstruationyes) 0.21 0.36 -0.68 0.81 62 1.06
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.87 0.13 -2.14 -1.62 516 1.01
Intercept[2] -1.04 0.13 -1.31 -0.79 513 1.01
Intercept[3] 0.13 0.13 -0.13 0.38 515 1.01
Intercept[4] 1.78 0.13 1.52 2.03 515 1.01
Intercept[5] 3.66 0.13 3.39 3.92 533 1.01
includedhorm_contra -0.02 0.12 -0.26 0.23 328 1.01
menstruationpre -0.16 0.06 -0.27 -0.05 1764 1.00
menstruationyes -0.14 0.06 -0.27 -0.02 1604 1.00
fertile -0.13 0.13 -0.38 0.14 1381 1.00
fertile_mean -0.56 0.56 -1.65 0.48 946 1.00
includedhorm_contra:menstruationpre 0.08 0.07 -0.07 0.23 1167 1.00
includedhorm_contra:menstruationyes 0.11 0.08 -0.05 0.27 809 1.00
includedhorm_contra:fertile 0.07 0.17 -0.26 0.41 1140 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Praktisch
17. practical
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 628 | 0.02 |
2 | Stimme überwiegend nicht zu | 1046 | 0.03 |
3 | Stimme eher nicht zu | 3185 | 0.11 |
4 | Stimme eher zu | 9221 | 0.31 |
5 | Stimme überwiegend zu | 8696 | 0.29 |
6 | Stimme voll zu | 7116 | 0.24 |
Family: cumulative(logit)
Formula: choice_of_clothing_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26558)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 72212.25; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.23 0.04 1.16 1.31 1105 1.00
sd(fertile) 1.14 0.14 0.85 1.40 390 1.01
sd(menstruationpre) 0.45 0.08 0.27 0.60 295 1.01
sd(menstruationyes) 0.28 0.11 0.03 0.46 217 1.01
cor(Intercept,fertile) -0.28 0.08 -0.43 -0.12 4000 1.00
cor(Intercept,menstruationpre) -0.17 0.10 -0.35 0.05 4000 1.00
cor(fertile,menstruationpre) 0.17 0.21 -0.30 0.48 236 1.01
cor(Intercept,menstruationyes) 0.02 0.21 -0.32 0.55 955 1.00
cor(fertile,menstruationyes) 0.36 0.28 -0.40 0.79 547 1.01
cor(menstruationpre,menstruationyes) 0.51 0.30 -0.30 0.90 391 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -4.61 0.12 -4.85 -4.39 1749 1
Intercept[2] -3.46 0.11 -3.67 -3.24 1589 1
Intercept[3] -2.09 0.11 -2.30 -1.88 1570 1
Intercept[4] -0.22 0.11 -0.43 -0.01 1577 1
Intercept[5] 1.41 0.11 1.20 1.62 1583 1
includedhorm_contra 0.07 0.10 -0.12 0.26 1100 1
menstruationpre 0.13 0.06 0.01 0.25 4000 1
menstruationyes 0.14 0.06 0.03 0.25 4000 1
fertile 0.16 0.13 -0.09 0.41 4000 1
fertile_mean -0.48 0.47 -1.39 0.44 2384 1
includedhorm_contra:menstruationpre -0.19 0.08 -0.35 -0.03 4000 1
includedhorm_contra:menstruationyes -0.19 0.07 -0.33 -0.04 4000 1
includedhorm_contra:fertile -0.10 0.16 -0.42 0.21 3177 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Sportlich
18. athletic
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 2782 | 0.09 |
2 | Stimme überwiegend nicht zu | 2963 | 0.1 |
3 | Stimme eher nicht zu | 5880 | 0.2 |
4 | Stimme eher zu | 8896 | 0.3 |
5 | Stimme überwiegend zu | 6298 | 0.21 |
6 | Stimme voll zu | 3068 | 0.1 |
Family: cumulative(logit)
Formula: choice_of_clothing_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26554)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 79384.6; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.49 0.04 1.41 1.58 885 1.00
sd(fertile) 0.97 0.15 0.67 1.24 379 1.01
sd(menstruationpre) 0.46 0.07 0.32 0.58 501 1.00
sd(menstruationyes) 0.54 0.06 0.40 0.65 433 1.00
cor(Intercept,fertile) -0.22 0.09 -0.39 -0.03 4000 1.00
cor(Intercept,menstruationpre) -0.36 0.09 -0.52 -0.18 4000 1.00
cor(fertile,menstruationpre) 0.24 0.19 -0.16 0.55 326 1.00
cor(Intercept,menstruationyes) -0.20 0.08 -0.36 -0.04 2353 1.00
cor(fertile,menstruationyes) 0.31 0.16 -0.04 0.59 293 1.00
cor(menstruationpre,menstruationyes) 0.90 0.07 0.73 0.98 504 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -2.98 0.12 -3.21 -2.74 1008 1
Intercept[2] -1.86 0.12 -2.10 -1.63 997 1
Intercept[3] -0.55 0.12 -0.78 -0.31 994 1
Intercept[4] 1.09 0.12 0.86 1.33 993 1
Intercept[5] 2.83 0.12 2.59 3.07 990 1
includedhorm_contra 0.18 0.11 -0.03 0.39 548 1
menstruationpre 0.10 0.06 -0.02 0.22 2095 1
menstruationyes 0.02 0.06 -0.10 0.14 2580 1
fertile 0.06 0.13 -0.19 0.30 2697 1
fertile_mean -0.40 0.52 -1.44 0.63 913 1
includedhorm_contra:menstruationpre -0.07 0.08 -0.22 0.08 2266 1
includedhorm_contra:menstruationyes -0.06 0.08 -0.22 0.10 2890 1
includedhorm_contra:fertile -0.04 0.16 -0.34 0.27 2589 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Sexy
19. sexy
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 5639 | 0.19 |
2 | Stimme überwiegend nicht zu | 4092 | 0.14 |
3 | Stimme eher nicht zu | 7002 | 0.23 |
4 | Stimme eher zu | 8183 | 0.27 |
5 | Stimme überwiegend zu | 3918 | 0.13 |
6 | Stimme voll zu | 1050 | 0.04 |
Family: cumulative(logit)
Formula: choice_of_clothing_4 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26551)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 77225.54; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.48 0.04 1.40 1.57 1019 1.00
sd(fertile) 1.32 0.13 1.07 1.56 469 1.01
sd(menstruationpre) 0.52 0.07 0.37 0.65 444 1.00
sd(menstruationyes) 0.60 0.06 0.47 0.72 755 1.00
cor(Intercept,fertile) -0.12 0.08 -0.26 0.04 1413 1.00
cor(Intercept,menstruationpre) -0.04 0.09 -0.21 0.15 1148 1.00
cor(fertile,menstruationpre) 0.48 0.13 0.19 0.70 490 1.00
cor(Intercept,menstruationyes) -0.09 0.08 -0.25 0.07 1408 1.00
cor(fertile,menstruationyes) 0.37 0.12 0.10 0.58 457 1.01
cor(menstruationpre,menstruationyes) 0.63 0.12 0.38 0.84 382 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.79 0.12 -2.05 -1.55 675 1.01
Intercept[2] -0.77 0.12 -1.02 -0.53 677 1.01
Intercept[3] 0.58 0.12 0.33 0.82 675 1.01
Intercept[4] 2.37 0.13 2.11 2.61 683 1.01
Intercept[5] 4.38 0.13 4.12 4.63 725 1.01
includedhorm_contra 0.24 0.11 0.02 0.44 551 1.01
menstruationpre -0.19 0.07 -0.32 -0.06 2042 1.00
menstruationyes -0.25 0.06 -0.38 -0.13 2146 1.00
fertile -0.24 0.14 -0.50 0.03 1845 1.00
fertile_mean 0.71 0.54 -0.33 1.77 1101 1.00
includedhorm_contra:menstruationpre 0.09 0.08 -0.07 0.26 1985 1.00
includedhorm_contra:menstruationyes 0.14 0.08 -0.03 0.30 2149 1.00
includedhorm_contra:fertile -0.03 0.17 -0.38 0.30 1766 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Glamourös
20. glamorous
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 14708 | 0.49 |
2 | Stimme überwiegend nicht zu | 5023 | 0.17 |
3 | Stimme eher nicht zu | 5030 | 0.17 |
4 | Stimme eher zu | 3347 | 0.11 |
5 | Stimme überwiegend zu | 1400 | 0.05 |
6 | Stimme voll zu | 377 | 0.01 |
Family: cumulative(logit)
Formula: choice_of_clothing_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26552)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 61988.09; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.74 0.06 1.64 1.86 511 1.00
sd(fertile) 1.16 0.14 0.87 1.44 354 1.01
sd(menstruationpre) 0.25 0.10 0.04 0.44 215 1.01
sd(menstruationyes) 0.39 0.11 0.11 0.56 183 1.02
cor(Intercept,fertile) -0.02 0.10 -0.22 0.18 1448 1.00
cor(Intercept,menstruationpre) 0.34 0.23 -0.11 0.79 992 1.00
cor(fertile,menstruationpre) -0.08 0.32 -0.73 0.51 360 1.01
cor(Intercept,menstruationyes) 0.12 0.17 -0.18 0.52 469 1.01
cor(fertile,menstruationyes) 0.21 0.22 -0.30 0.59 277 1.01
cor(menstruationpre,menstruationyes) 0.30 0.35 -0.52 0.85 136 1.02
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 0.40 0.14 0.12 0.68 500 1
Intercept[2] 1.48 0.14 1.19 1.76 504 1
Intercept[3] 2.72 0.14 2.44 3.01 515 1
Intercept[4] 4.18 0.15 3.89 4.47 528 1
Intercept[5] 5.98 0.16 5.67 6.28 681 1
includedhorm_contra 0.50 0.13 0.26 0.76 404 1
menstruationpre -0.08 0.07 -0.22 0.07 1760 1
menstruationyes -0.15 0.07 -0.29 -0.01 2355 1
fertile 0.10 0.15 -0.20 0.40 1560 1
fertile_mean 0.38 0.60 -0.75 1.59 1064 1
includedhorm_contra:menstruationpre -0.06 0.09 -0.23 0.11 2070 1
includedhorm_contra:menstruationyes 0.02 0.09 -0.15 0.19 2370 1
includedhorm_contra:fertile -0.30 0.18 -0.66 0.05 1775 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Figurbetont
21. figure – hugging
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 3567 | 0.12 |
2 | Stimme überwiegend nicht zu | 2175 | 0.07 |
3 | Stimme eher nicht zu | 4804 | 0.16 |
4 | Stimme eher zu | 10377 | 0.35 |
5 | Stimme überwiegend zu | 6510 | 0.22 |
6 | Stimme voll zu | 2450 | 0.08 |
Family: cumulative(logit)
Formula: choice_of_clothing_6 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26550)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 75356.62; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.56 0.05 1.47 1.67 840 1.00
sd(fertile) 1.22 0.12 0.97 1.46 479 1.01
sd(menstruationpre) 0.50 0.07 0.35 0.63 456 1.01
sd(menstruationyes) 0.50 0.07 0.37 0.63 615 1.00
cor(Intercept,fertile) -0.08 0.08 -0.24 0.09 1502 1.00
cor(Intercept,menstruationpre) -0.14 0.09 -0.31 0.06 1903 1.00
cor(fertile,menstruationpre) 0.43 0.14 0.13 0.66 474 1.00
cor(Intercept,menstruationyes) -0.23 0.09 -0.39 -0.06 2583 1.00
cor(fertile,menstruationyes) 0.27 0.15 -0.05 0.53 316 1.01
cor(menstruationpre,menstruationyes) 0.71 0.13 0.43 0.95 269 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -2.54 0.13 -2.78 -2.28 536 1.02
Intercept[2] -1.78 0.13 -2.03 -1.52 633 1.02
Intercept[3] -0.63 0.13 -0.87 -0.37 630 1.02
Intercept[4] 1.38 0.13 1.13 1.64 628 1.02
Intercept[5] 3.43 0.13 3.19 3.70 643 1.01
includedhorm_contra 0.16 0.11 -0.06 0.38 469 1.01
menstruationpre -0.12 0.06 -0.24 0.01 1972 1.00
menstruationyes -0.22 0.06 -0.34 -0.10 2008 1.00
fertile -0.08 0.14 -0.35 0.20 2118 1.00
fertile_mean 0.91 0.57 -0.17 2.09 946 1.00
includedhorm_contra:menstruationpre -0.02 0.08 -0.18 0.14 1840 1.00
includedhorm_contra:menstruationyes 0.15 0.08 0.00 0.31 1724 1.00
includedhorm_contra:fertile -0.07 0.17 -0.39 0.27 1874 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Verführerisch
22. seductive
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 10425 | 0.35 |
2 | Stimme überwiegend nicht zu | 4983 | 0.17 |
3 | Stimme eher nicht zu | 7017 | 0.23 |
4 | Stimme eher zu | 4902 | 0.16 |
5 | Stimme überwiegend zu | 2004 | 0.07 |
6 | Stimme voll zu | 550 | 0.02 |
Family: cumulative(logit)
Formula: choice_of_clothing_7 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26548)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 70438.85; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.68 0.05 1.58 1.78 569 1.00
sd(fertile) 1.34 0.13 1.08 1.58 374 1.01
sd(menstruationpre) 0.25 0.13 0.02 0.47 71 1.05
sd(menstruationyes) 0.39 0.12 0.10 0.58 89 1.05
cor(Intercept,fertile) -0.18 0.08 -0.33 -0.02 1768 1.00
cor(Intercept,menstruationpre) 0.19 0.25 -0.29 0.73 398 1.00
cor(fertile,menstruationpre) -0.10 0.31 -0.78 0.45 207 1.02
cor(Intercept,menstruationyes) -0.05 0.15 -0.32 0.27 1139 1.00
cor(fertile,menstruationyes) 0.06 0.22 -0.48 0.40 225 1.04
cor(menstruationpre,menstruationyes) 0.29 0.42 -0.76 0.87 51 1.11
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -0.68 0.13 -0.94 -0.41 424 1.01
Intercept[2] 0.36 0.13 0.10 0.64 429 1.01
Intercept[3] 1.81 0.13 1.55 2.08 440 1.01
Intercept[4] 3.38 0.14 3.13 3.66 453 1.01
Intercept[5] 5.21 0.14 4.94 5.50 484 1.01
includedhorm_contra 0.21 0.11 -0.01 0.44 334 1.02
menstruationpre -0.19 0.06 -0.31 -0.07 1762 1.00
menstruationyes -0.27 0.06 -0.40 -0.15 1953 1.00
fertile 0.06 0.14 -0.20 0.35 1677 1.00
fertile_mean 0.47 0.57 -0.65 1.62 810 1.01
includedhorm_contra:menstruationpre 0.10 0.08 -0.06 0.25 1853 1.00
includedhorm_contra:menstruationyes 0.17 0.08 0.02 0.33 2039 1.00
includedhorm_contra:fertile -0.30 0.18 -0.64 0.05 1762 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Auffällig
23. noticeable
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 8689 | 0.29 |
2 | Stimme überwiegend nicht zu | 4507 | 0.15 |
3 | Stimme eher nicht zu | 7087 | 0.24 |
4 | Stimme eher zu | 5938 | 0.2 |
5 | Stimme überwiegend zu | 2720 | 0.09 |
6 | Stimme voll zu | 941 | 0.03 |
Family: cumulative(logit)
Formula: choice_of_clothing_8 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26549)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 73271.26; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.68 0.05 1.58 1.77 805 1.00
sd(fertile) 1.04 0.14 0.76 1.31 296 1.02
sd(menstruationpre) 0.41 0.10 0.19 0.58 77 1.03
sd(menstruationyes) 0.49 0.07 0.34 0.63 319 1.02
cor(Intercept,fertile) 0.01 0.10 -0.18 0.22 894 1.00
cor(Intercept,menstruationpre) 0.21 0.15 -0.05 0.55 215 1.01
cor(fertile,menstruationpre) 0.05 0.26 -0.55 0.46 134 1.02
cor(Intercept,menstruationyes) -0.07 0.10 -0.26 0.13 1768 1.00
cor(fertile,menstruationyes) 0.02 0.20 -0.40 0.37 234 1.02
cor(menstruationpre,menstruationyes) 0.07 0.23 -0.45 0.46 120 1.03
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.09 0.13 -1.35 -0.82 556 1.00
Intercept[2] -0.06 0.13 -0.32 0.21 565 1.00
Intercept[3] 1.35 0.13 1.09 1.63 561 1.01
Intercept[4] 2.96 0.14 2.69 3.23 574 1.01
Intercept[5] 4.72 0.14 4.45 4.99 627 1.01
includedhorm_contra 0.14 0.12 -0.08 0.38 339 1.01
menstruationpre -0.14 0.07 -0.27 -0.01 2265 1.00
menstruationyes -0.20 0.07 -0.33 -0.07 2303 1.00
fertile -0.14 0.14 -0.40 0.13 2201 1.00
fertile_mean 0.65 0.58 -0.43 1.83 846 1.00
includedhorm_contra:menstruationpre 0.04 0.08 -0.12 0.22 2427 1.00
includedhorm_contra:menstruationyes 0.12 0.08 -0.04 0.28 2668 1.00
includedhorm_contra:fertile -0.15 0.17 -0.47 0.18 2133 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Wie oft haben Sie seit Ihrem letzten Eintrag mit Ihrem Partner kommuniziert?
1. How often did you communicate with your partner?
choice | value | frequency | percent |
---|---|---|---|
1 | Gar nicht | 1027 | 0.03 |
2 | Wenig | 11628 | 0.39 |
3 | Viel | 17247 | 0.58 |
Family: cumulative(logit)
Formula: communication_partner_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26568)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 37037.95; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.32 0.05 1.22 1.42 1344 1.00
sd(fertile) 1.81 0.13 1.54 2.08 556 1.01
sd(menstruationpre) 0.82 0.07 0.69 0.96 852 1.00
sd(menstruationyes) 0.75 0.07 0.60 0.89 989 1.00
cor(Intercept,fertile) -0.37 0.07 -0.49 -0.24 1702 1.00
cor(Intercept,menstruationpre) -0.34 0.08 -0.48 -0.19 1822 1.00
cor(fertile,menstruationpre) 0.45 0.09 0.27 0.61 574 1.01
cor(Intercept,menstruationyes) -0.17 0.09 -0.33 0.01 1787 1.00
cor(fertile,menstruationyes) 0.56 0.09 0.38 0.73 802 1.00
cor(menstruationpre,menstruationyes) 0.51 0.10 0.30 0.69 754 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -4.07 0.12 -4.32 -3.83 1364 1
Intercept[2] -0.40 0.12 -0.65 -0.17 1283 1
includedhorm_contra 0.18 0.10 -0.02 0.38 1061 1
menstruationpre 0.08 0.08 -0.09 0.24 2087 1
menstruationyes 0.07 0.08 -0.08 0.22 2136 1
fertile -0.07 0.17 -0.41 0.26 1857 1
fertile_mean -0.37 0.50 -1.38 0.60 2277 1
includedhorm_contra:menstruationpre -0.21 0.11 -0.43 -0.01 1869 1
includedhorm_contra:menstruationyes -0.14 0.10 -0.34 0.05 2106 1
includedhorm_contra:fertile -0.23 0.21 -0.62 0.17 1746 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Auf welche Art haben Sie hauptsächlich mit Ihrem Partner kommuniziert?
2. How did you communicate mainly with your partner?
choice | value | frequency | percent |
---|---|---|---|
1 | Direkter persönlicher Kontakt | 18537 | 0.64 |
2 | Telefon | 3226 | 0.11 |
3 | SMS | 1126 | 0.04 |
4 | mobile Nachrichtenapp (z.B. Whatsapp) | 4368 | 0.15 |
5 | Webcam (z.B. Skype) | 681 | 0.02 |
6 | 216 | 0.01 | |
7 | Chat (z.B. Facebook) | 703 | 0.02 |
Family: categorical(logit)
Formula: communication_partner_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
Data: diary (Number of observations: 25656)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 38999.67; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1039)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(X2_Intercept) 2.06 0.10 1.87 2.28 1814 1.00
sd(X2_fertile) 1.95 0.25 1.45 2.45 552 1.00
sd(X2_menstruationpre) 0.69 0.17 0.27 0.97 421 1.00
sd(X2_menstruationyes) 0.52 0.22 0.05 0.92 268 1.02
sd(X3_Intercept) 2.83 0.19 2.48 3.22 1374 1.00
sd(X3_fertile) 2.50 0.44 1.66 3.39 765 1.00
sd(X3_menstruationpre) 0.78 0.31 0.12 1.37 409 1.01
sd(X3_menstruationyes) 0.38 0.26 0.02 0.95 564 1.01
sd(X4_Intercept) 2.46 0.12 2.23 2.69 1707 1.00
sd(X4_fertile) 1.86 0.25 1.36 2.34 739 1.01
sd(X4_menstruationpre) 0.75 0.13 0.48 0.99 647 1.00
sd(X4_menstruationyes) 0.84 0.14 0.56 1.12 1042 1.00
sd(X5_Intercept) 4.86 0.41 4.11 5.74 1167 1.00
sd(X5_fertile) 1.00 0.66 0.04 2.43 722 1.00
sd(X5_menstruationpre) 1.08 0.31 0.46 1.69 944 1.00
sd(X5_menstruationyes) 0.93 0.37 0.16 1.67 987 1.00
sd(X6_Intercept) 4.91 0.68 3.75 6.41 1039 1.00
sd(X6_fertile) 1.04 0.82 0.04 3.06 1371 1.00
sd(X6_menstruationpre) 1.32 0.70 0.11 2.84 904 1.00
sd(X6_menstruationyes) 0.81 0.57 0.05 2.16 1139 1.00
sd(X7_Intercept) 3.97 0.36 3.33 4.75 1276 1.00
sd(X7_fertile) 3.00 0.56 1.93 4.14 1022 1.00
sd(X7_menstruationpre) 0.56 0.36 0.03 1.35 648 1.00
sd(X7_menstruationyes) 1.27 0.58 0.20 2.54 1426 1.00
cor(X2_Intercept,X2_fertile) -0.23 0.13 -0.47 0.04 2865 1.00
cor(X2_Intercept,X2_menstruationpre) -0.18 0.18 -0.52 0.21 3209 1.00
cor(X2_fertile,X2_menstruationpre) 0.21 0.22 -0.33 0.57 509 1.00
cor(X2_Intercept,X2_menstruationyes) 0.05 0.25 -0.44 0.56 2384 1.00
cor(X2_fertile,X2_menstruationyes) 0.34 0.27 -0.31 0.79 858 1.00
cor(X2_menstruationpre,X2_menstruationyes) 0.23 0.33 -0.59 0.75 555 1.00
cor(X3_Intercept,X3_fertile) -0.01 0.19 -0.38 0.36 4000 1.00
cor(X3_Intercept,X3_menstruationpre) 0.16 0.28 -0.42 0.69 4000 1.00
cor(X3_fertile,X3_menstruationpre) 0.16 0.30 -0.54 0.68 939 1.00
cor(X3_Intercept,X3_menstruationyes) 0.05 0.39 -0.72 0.76 4000 1.00
cor(X3_fertile,X3_menstruationyes) 0.18 0.40 -0.68 0.82 1589 1.00
cor(X3_menstruationpre,X3_menstruationyes) 0.27 0.42 -0.67 0.90 1086 1.00
cor(X4_Intercept,X4_fertile) -0.01 0.15 -0.31 0.29 4000 1.00
cor(X4_Intercept,X4_menstruationpre) -0.04 0.18 -0.39 0.32 4000 1.00
cor(X4_fertile,X4_menstruationpre) 0.37 0.17 -0.02 0.66 703 1.00
cor(X4_Intercept,X4_menstruationyes) 0.29 0.16 -0.04 0.59 2143 1.00
cor(X4_fertile,X4_menstruationyes) -0.02 0.19 -0.42 0.31 592 1.01
cor(X4_menstruationpre,X4_menstruationyes) 0.43 0.17 0.07 0.75 764 1.00
cor(X5_Intercept,X5_fertile) 0.16 0.42 -0.71 0.86 4000 1.00
cor(X5_Intercept,X5_menstruationpre) -0.21 0.31 -0.76 0.41 4000 1.00
cor(X5_fertile,X5_menstruationpre) -0.09 0.40 -0.81 0.69 488 1.00
cor(X5_Intercept,X5_menstruationyes) 0.21 0.33 -0.49 0.76 4000 1.00
cor(X5_fertile,X5_menstruationyes) 0.06 0.42 -0.76 0.80 600 1.01
cor(X5_menstruationpre,X5_menstruationyes) 0.35 0.32 -0.38 0.85 1679 1.00
cor(X6_Intercept,X6_fertile) 0.07 0.44 -0.78 0.82 4000 1.00
cor(X6_Intercept,X6_menstruationpre) -0.24 0.37 -0.84 0.53 4000 1.00
cor(X6_fertile,X6_menstruationpre) 0.07 0.44 -0.76 0.84 1155 1.00
cor(X6_Intercept,X6_menstruationyes) 0.05 0.42 -0.77 0.78 4000 1.00
cor(X6_fertile,X6_menstruationyes) 0.10 0.45 -0.78 0.85 2282 1.00
cor(X6_menstruationpre,X6_menstruationyes) 0.05 0.43 -0.76 0.80 3070 1.00
cor(X7_Intercept,X7_fertile) -0.04 0.24 -0.51 0.43 2886 1.00
cor(X7_Intercept,X7_menstruationpre) 0.25 0.41 -0.65 0.87 4000 1.00
cor(X7_fertile,X7_menstruationpre) -0.20 0.37 -0.83 0.57 2658 1.00
cor(X7_Intercept,X7_menstruationyes) 0.68 0.25 0.00 0.95 1853 1.00
cor(X7_fertile,X7_menstruationyes) 0.17 0.27 -0.40 0.65 1972 1.00
cor(X7_menstruationpre,X7_menstruationyes) 0.15 0.41 -0.73 0.81 1704 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
X2_Intercept -2.84 0.24 -3.31 -2.38 1897 1
X3_Intercept -5.41 0.43 -6.25 -4.60 2297 1
X4_Intercept -3.31 0.28 -3.88 -2.77 1492 1
X5_Intercept -8.39 0.90 -10.26 -6.74 1317 1
X6_Intercept -10.27 1.43 -13.42 -7.72 1784 1
X7_Intercept -8.16 0.77 -9.74 -6.73 1873 1
X2_includedhorm_contra 0.23 0.18 -0.14 0.57 1527 1
X2_menstruationpre 0.10 0.17 -0.23 0.43 3175 1
X2_menstruationyes 0.04 0.17 -0.29 0.34 1743 1
X2_fertile 0.20 0.36 -0.50 0.92 3066 1
X2_fertile_mean -0.92 1.08 -3.03 1.20 1827 1
X2_includedhorm_contra:menstruationpre 0.14 0.16 -0.19 0.47 4000 1
X2_includedhorm_contra:menstruationyes 0.05 0.16 -0.26 0.36 4000 1
X2_includedhorm_contra:fertile 0.35 0.35 -0.34 1.03 4000 1
X3_includedhorm_contra 0.01 0.30 -0.59 0.61 1550 1
X3_menstruationpre -0.41 0.41 -1.27 0.30 2653 1
X3_menstruationyes -0.09 0.30 -0.73 0.48 4000 1
X3_fertile -0.74 0.86 -2.48 0.91 2808 1
X3_fertile_mean -0.39 1.82 -4.01 3.15 1965 1
X3_includedhorm_contra:menstruationpre 0.28 0.28 -0.28 0.81 4000 1
X3_includedhorm_contra:menstruationyes 0.31 0.25 -0.16 0.81 4000 1
X3_includedhorm_contra:fertile 0.75 0.63 -0.47 1.99 4000 1
X4_includedhorm_contra 1.19 0.21 0.77 1.60 1116 1
X4_menstruationpre 0.07 0.20 -0.32 0.46 2602 1
X4_menstruationyes -0.20 0.20 -0.61 0.19 3034 1
X4_fertile 0.08 0.42 -0.77 0.91 2698 1
X4_fertile_mean -1.18 1.26 -3.64 1.25 1534 1
X4_includedhorm_contra:menstruationpre 0.03 0.17 -0.32 0.37 4000 1
X4_includedhorm_contra:menstruationyes 0.18 0.18 -0.15 0.54 4000 1
X4_includedhorm_contra:fertile 0.05 0.37 -0.67 0.79 4000 1
X5_includedhorm_contra 0.12 0.53 -0.91 1.13 1092 1
X5_menstruationpre 0.16 0.68 -1.21 1.49 3310 1
X5_menstruationyes -0.96 0.73 -2.53 0.30 3148 1
X5_fertile 0.49 1.08 -2.03 2.39 2329 1
X5_fertile_mean -3.84 3.49 -10.76 3.01 1514 1
X5_includedhorm_contra:menstruationpre 0.12 0.41 -0.71 0.91 4000 1
X5_includedhorm_contra:menstruationyes 0.92 0.40 0.15 1.74 4000 1
X5_includedhorm_contra:fertile -0.44 0.72 -1.87 0.97 4000 1
X6_includedhorm_contra -0.76 0.81 -2.40 0.80 1770 1
X6_menstruationpre 0.66 1.26 -2.13 2.98 3225 1
X6_menstruationyes -0.48 1.09 -3.14 1.27 2166 1
X6_fertile 1.19 1.57 -2.49 3.81 2424 1
X6_fertile_mean -8.37 5.38 -19.34 1.82 2048 1
X6_includedhorm_contra:menstruationpre -0.69 0.86 -2.37 0.98 4000 1
X6_includedhorm_contra:menstruationyes 0.91 0.70 -0.47 2.34 4000 1
X6_includedhorm_contra:fertile -0.87 1.37 -3.60 1.77 4000 1
X7_includedhorm_contra 0.26 0.47 -0.68 1.23 1417 1
X7_menstruationpre -0.53 0.65 -2.13 0.49 2032 1
X7_menstruationyes -1.48 1.10 -3.94 0.37 2086 1
X7_fertile 0.21 1.42 -2.73 2.92 2871 1
X7_fertile_mean 0.05 2.89 -5.72 5.69 1757 1
X7_includedhorm_contra:menstruationpre 0.01 0.37 -0.72 0.79 4000 1
X7_includedhorm_contra:menstruationyes -0.43 0.41 -1.25 0.34 4000 1
X7_includedhorm_contra:fertile -0.77 0.87 -2.46 0.94 4000 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Error: Error: Marginal plots are not yet implemented for categorical models.
… habe ich mich sexuell begehrenswert gefühlt.
25. I felt sexually desirable.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 3063 | 0.1 |
2 | Stimme überwiegend nicht zu | 2944 | 0.1 |
3 | Stimme eher nicht zu | 6093 | 0.2 |
4 | Stimme eher zu | 9126 | 0.31 |
5 | Stimme überwiegend zu | 5787 | 0.19 |
6 | Stimme voll zu | 2868 | 0.1 |
Family: cumulative(logit)
Formula: desirability_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26549)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 77829.21; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.60 0.05 1.51 1.69 938 1.01
sd(fertile) 1.52 0.12 1.29 1.74 704 1.00
sd(menstruationpre) 0.65 0.06 0.54 0.77 730 1.01
sd(menstruationyes) 0.66 0.06 0.54 0.77 728 1.01
cor(Intercept,fertile) -0.29 0.06 -0.41 -0.16 1909 1.00
cor(Intercept,menstruationpre) -0.15 0.08 -0.29 0.01 1762 1.00
cor(fertile,menstruationpre) 0.34 0.10 0.12 0.51 708 1.00
cor(Intercept,menstruationyes) -0.25 0.07 -0.38 -0.11 2404 1.00
cor(fertile,menstruationyes) 0.17 0.11 -0.06 0.37 650 1.00
cor(menstruationpre,menstruationyes) 0.37 0.10 0.15 0.56 548 1.02
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -3.07 0.13 -3.31 -2.83 904 1.01
Intercept[2] -1.99 0.12 -2.23 -1.75 886 1.01
Intercept[3] -0.60 0.12 -0.84 -0.36 871 1.01
Intercept[4] 1.16 0.12 0.92 1.40 775 1.01
Intercept[5] 2.89 0.13 2.66 3.14 784 1.01
includedhorm_contra -0.04 0.11 -0.26 0.17 645 1.00
menstruationpre -0.21 0.07 -0.34 -0.07 2230 1.00
menstruationyes -0.43 0.06 -0.55 -0.30 2054 1.00
fertile 0.24 0.14 -0.03 0.52 1971 1.00
fertile_mean 0.00 0.53 -1.01 1.05 1254 1.00
includedhorm_contra:menstruationpre 0.09 0.09 -0.08 0.25 2164 1.00
includedhorm_contra:menstruationyes 0.12 0.08 -0.04 0.28 2045 1.00
includedhorm_contra:fertile -0.46 0.18 -0.80 -0.11 1877 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
…fand ich meinen Partner besonders sexuell anziehend.
26. I found my partner sexually desirable.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 3019 | 0.1 |
2 | Stimme überwiegend nicht zu | 2413 | 0.08 |
3 | Stimme eher nicht zu | 5435 | 0.18 |
4 | Stimme eher zu | 9046 | 0.3 |
5 | Stimme überwiegend zu | 6032 | 0.2 |
6 | Stimme voll zu | 3934 | 0.13 |
Family: cumulative(logit)
Formula: desirability_partner ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26548)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 76199.22; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.73 0.05 1.64 1.83 714 1.01
sd(fertile) 1.70 0.12 1.47 1.93 696 1.01
sd(menstruationpre) 0.76 0.06 0.65 0.87 700 1.00
sd(menstruationyes) 0.84 0.06 0.72 0.94 690 1.00
cor(Intercept,fertile) -0.26 0.06 -0.36 -0.14 1569 1.00
cor(Intercept,menstruationpre) -0.17 0.07 -0.30 -0.03 1839 1.00
cor(fertile,menstruationpre) 0.24 0.09 0.05 0.39 494 1.01
cor(Intercept,menstruationyes) -0.16 0.06 -0.28 -0.04 1618 1.00
cor(fertile,menstruationyes) 0.24 0.09 0.07 0.41 513 1.01
cor(menstruationpre,menstruationyes) 0.30 0.09 0.12 0.46 548 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -2.95 0.13 -3.22 -2.69 551 1.00
Intercept[2] -2.00 0.13 -2.26 -1.74 549 1.00
Intercept[3] -0.63 0.13 -0.89 -0.37 543 1.00
Intercept[4] 1.20 0.13 0.94 1.46 548 1.00
Intercept[5] 2.86 0.13 2.59 3.12 556 1.00
includedhorm_contra 0.40 0.12 0.18 0.64 359 1.01
menstruationpre -0.08 0.07 -0.22 0.07 1528 1.00
menstruationyes -0.21 0.07 -0.34 -0.07 1643 1.00
fertile 0.36 0.15 0.07 0.65 1333 1.00
fertile_mean -0.14 0.56 -1.27 0.93 931 1.00
includedhorm_contra:menstruationpre 0.02 0.09 -0.16 0.21 1610 1.00
includedhorm_contra:menstruationyes 0.05 0.09 -0.13 0.23 1790 1.00
includedhorm_contra:fertile -0.61 0.19 -1.00 -0.24 1364 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich mich zu einem Freund, Bekannten oder Kollegen hingezogen gefühlt
54. I was attracted to a friend, acquaintance, or colleague.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 24168 | 0.81 |
2 | Stimme überwiegend nicht zu | 1382 | 0.05 |
3 | Stimme eher nicht zu | 1145 | 0.04 |
4 | Stimme eher zu | 1629 | 0.05 |
5 | Stimme überwiegend zu | 781 | 0.03 |
6 | Stimme voll zu | 768 | 0.03 |
Family: cumulative(logit)
Formula: extra_pair_10 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 31332.22; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.46 0.10 2.28 2.65 753 1.01
sd(fertile) 1.85 0.21 1.45 2.25 324 1.02
sd(menstruationpre) 0.74 0.11 0.52 0.96 497 1.01
sd(menstruationyes) 0.95 0.10 0.74 1.16 860 1.01
cor(Intercept,fertile) -0.10 0.11 -0.30 0.12 1607 1.00
cor(Intercept,menstruationpre) 0.07 0.14 -0.21 0.34 1590 1.00
cor(fertile,menstruationpre) 0.06 0.17 -0.29 0.36 233 1.02
cor(Intercept,menstruationyes) 0.03 0.11 -0.19 0.24 1394 1.00
cor(fertile,menstruationyes) 0.40 0.11 0.17 0.61 396 1.01
cor(menstruationpre,menstruationyes) 0.65 0.12 0.39 0.86 439 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 2.05 0.19 1.68 2.44 668 1.00
Intercept[2] 2.63 0.19 2.26 3.01 675 1.00
Intercept[3] 3.20 0.19 2.83 3.59 680 1.00
Intercept[4] 4.44 0.19 4.06 4.83 685 1.00
Intercept[5] 5.55 0.20 5.15 5.95 710 1.00
includedhorm_contra -0.78 0.18 -1.15 -0.42 354 1.01
menstruationpre -0.38 0.13 -0.64 -0.12 1805 1.00
menstruationyes -0.25 0.12 -0.50 -0.01 1965 1.00
fertile 0.35 0.24 -0.13 0.82 1901 1.00
fertile_mean 0.14 0.75 -1.35 1.64 1166 1.00
includedhorm_contra:menstruationpre 0.14 0.14 -0.14 0.41 1680 1.00
includedhorm_contra:menstruationyes -0.02 0.14 -0.31 0.25 1640 1.00
includedhorm_contra:fertile -0.50 0.27 -1.04 0.02 1721 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich mich zu einem Mann hingezogen gefühlt, den ich nicht kannte.
55. I was attracted to a stranger.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 26789 | 0.9 |
2 | Stimme überwiegend nicht zu | 1080 | 0.04 |
3 | Stimme eher nicht zu | 728 | 0.02 |
4 | Stimme eher zu | 773 | 0.03 |
5 | Stimme überwiegend zu | 299 | 0.01 |
6 | Stimme voll zu | 204 | 0.01 |
Family: cumulative(logit)
Formula: extra_pair_11 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 20657.91; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.16 0.10 1.97 2.36 782 1.00
sd(fertile) 1.55 0.29 0.96 2.09 355 1.01
sd(menstruationpre) 0.61 0.15 0.31 0.89 448 1.00
sd(menstruationyes) 0.78 0.13 0.53 1.03 564 1.01
cor(Intercept,fertile) -0.41 0.13 -0.64 -0.14 1847 1.00
cor(Intercept,menstruationpre) -0.32 0.17 -0.63 0.05 2298 1.00
cor(fertile,menstruationpre) 0.41 0.24 -0.14 0.80 407 1.01
cor(Intercept,menstruationyes) -0.30 0.14 -0.56 -0.01 1722 1.00
cor(fertile,menstruationyes) 0.33 0.21 -0.13 0.69 335 1.01
cor(menstruationpre,menstruationyes) 0.84 0.12 0.56 0.98 389 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 2.70 0.21 2.27 3.10 1132 1.01
Intercept[2] 3.37 0.21 2.94 3.78 1133 1.01
Intercept[3] 3.99 0.21 3.56 4.40 1144 1.00
Intercept[4] 5.14 0.22 4.71 5.56 1177 1.00
Intercept[5] 6.20 0.23 5.75 6.63 1278 1.00
includedhorm_contra -0.62 0.17 -0.96 -0.28 900 1.00
menstruationpre -0.44 0.16 -0.76 -0.14 2402 1.00
menstruationyes -0.28 0.15 -0.60 0.00 2255 1.00
fertile 0.58 0.28 0.02 1.15 2033 1.00
fertile_mean -1.54 0.95 -3.59 0.14 1485 1.01
includedhorm_contra:menstruationpre 0.31 0.16 0.00 0.62 2753 1.00
includedhorm_contra:menstruationyes 0.40 0.16 0.09 0.71 2497 1.00
includedhorm_contra:fertile -0.29 0.30 -0.87 0.28 2432 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… sind mir attraktive Männer in meiner Umgebung aufgefallen.
56. I noticed attractive men around me.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 16870 | 0.56 |
2 | Stimme überwiegend nicht zu | 2130 | 0.07 |
3 | Stimme eher nicht zu | 2522 | 0.08 |
4 | Stimme eher zu | 4655 | 0.16 |
5 | Stimme überwiegend zu | 2281 | 0.08 |
6 | Stimme voll zu | 1415 | 0.05 |
Family: cumulative(logit)
Formula: extra_pair_12 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 61689.6; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.69 0.06 1.58 1.80 714 1.01
sd(fertile) 1.40 0.15 1.08 1.69 325 1.01
sd(menstruationpre) 0.48 0.09 0.28 0.64 296 1.02
sd(menstruationyes) 0.65 0.07 0.50 0.79 559 1.01
cor(Intercept,fertile) -0.20 0.08 -0.35 -0.02 1521 1.00
cor(Intercept,menstruationpre) -0.12 0.13 -0.36 0.15 1438 1.01
cor(fertile,menstruationpre) 0.45 0.16 0.08 0.71 307 1.01
cor(Intercept,menstruationyes) -0.05 0.10 -0.24 0.15 1384 1.00
cor(fertile,menstruationyes) 0.49 0.12 0.23 0.70 405 1.01
cor(menstruationpre,menstruationyes) 0.76 0.13 0.47 0.96 175 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 0.29 0.14 0.02 0.57 671 1.00
Intercept[2] 0.75 0.14 0.47 1.03 675 1.00
Intercept[3] 1.31 0.14 1.03 1.59 680 1.00
Intercept[4] 2.68 0.14 2.40 2.96 691 1.00
Intercept[5] 3.97 0.14 3.70 4.26 711 1.00
includedhorm_contra -0.20 0.13 -0.46 0.05 486 1.01
menstruationpre -0.27 0.07 -0.42 -0.13 1681 1.00
menstruationyes -0.28 0.08 -0.44 -0.13 1564 1.00
fertile 0.52 0.16 0.22 0.83 1610 1.00
fertile_mean 0.05 0.59 -1.08 1.22 1034 1.00
includedhorm_contra:menstruationpre 0.17 0.09 -0.01 0.35 1849 1.00
includedhorm_contra:menstruationyes 0.41 0.09 0.23 0.60 1756 1.00
includedhorm_contra:fertile -0.41 0.19 -0.79 -0.04 1663 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hatte ich sexuelle Fantasien mit anderen Männern als meinem Partner.
57. I had sexual fantasies about men other than my partner.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 24682 | 0.83 |
2 | Stimme überwiegend nicht zu | 1332 | 0.04 |
3 | Stimme eher nicht zu | 930 | 0.03 |
4 | Stimme eher zu | 1396 | 0.05 |
5 | Stimme überwiegend zu | 663 | 0.02 |
6 | Stimme voll zu | 870 | 0.03 |
Family: cumulative(logit)
Formula: extra_pair_13 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 29462.48; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.32 0.10 2.14 2.51 730 1.00
sd(fertile) 2.02 0.20 1.64 2.41 564 1.00
sd(menstruationpre) 0.88 0.12 0.65 1.11 505 1.01
sd(menstruationyes) 0.79 0.11 0.58 1.00 547 1.01
cor(Intercept,fertile) -0.08 0.11 -0.28 0.13 1861 1.00
cor(Intercept,menstruationpre) -0.12 0.12 -0.36 0.12 1950 1.00
cor(fertile,menstruationpre) 0.35 0.13 0.05 0.58 592 1.00
cor(Intercept,menstruationyes) 0.00 0.13 -0.26 0.25 2053 1.00
cor(fertile,menstruationyes) 0.42 0.13 0.14 0.66 705 1.01
cor(menstruationpre,menstruationyes) 0.79 0.10 0.57 0.96 545 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 1.97 0.19 1.61 2.34 952 1
Intercept[2] 2.54 0.19 2.18 2.92 960 1
Intercept[3] 3.02 0.19 2.65 3.39 913 1
Intercept[4] 4.04 0.19 3.67 4.41 918 1
Intercept[5] 4.86 0.19 4.49 5.24 937 1
includedhorm_contra -0.93 0.18 -1.28 -0.60 740 1
menstruationpre -0.41 0.13 -0.68 -0.15 2175 1
menstruationyes -0.43 0.12 -0.67 -0.20 2203 1
fertile 0.60 0.25 0.10 1.09 2223 1
fertile_mean -0.45 0.75 -2.00 0.94 1608 1
includedhorm_contra:menstruationpre 0.12 0.15 -0.17 0.41 2524 1
includedhorm_contra:menstruationyes 0.22 0.14 -0.06 0.48 2653 1
includedhorm_contra:fertile -0.78 0.30 -1.36 -0.21 2293 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
…war es mir wichtig, dass mich andere Männer als attraktiv wahrnehmen.
46. It was important to me that other men perceive me to be attractive.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 12039 | 0.4 |
2 | Stimme überwiegend nicht zu | 3570 | 0.12 |
3 | Stimme eher nicht zu | 4078 | 0.14 |
4 | Stimme eher zu | 5888 | 0.2 |
5 | Stimme überwiegend zu | 2883 | 0.1 |
6 | Stimme voll zu | 1416 | 0.05 |
Family: cumulative(logit)
Formula: extra_pair_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 67203.83; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.18 0.06 2.06 2.32 716 1.01
sd(fertile) 1.64 0.13 1.38 1.89 529 1.01
sd(menstruationpre) 0.57 0.07 0.42 0.71 492 1.00
sd(menstruationyes) 0.77 0.06 0.65 0.90 867 1.00
cor(Intercept,fertile) -0.13 0.07 -0.28 0.01 2082 1.00
cor(Intercept,menstruationpre) -0.15 0.10 -0.34 0.06 2079 1.00
cor(fertile,menstruationpre) 0.44 0.11 0.21 0.63 593 1.00
cor(Intercept,menstruationyes) -0.26 0.08 -0.41 -0.11 2012 1.00
cor(fertile,menstruationyes) 0.48 0.09 0.29 0.65 581 1.01
cor(menstruationpre,menstruationyes) 0.79 0.09 0.59 0.95 192 1.04
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -0.67 0.17 -1.00 -0.34 448 1.00
Intercept[2] 0.17 0.17 -0.16 0.51 445 1.00
Intercept[3] 1.13 0.17 0.80 1.47 444 1.00
Intercept[4] 2.83 0.17 2.50 3.17 446 1.01
Intercept[5] 4.49 0.17 4.16 4.83 459 1.01
includedhorm_contra -0.29 0.15 -0.59 -0.01 291 1.01
menstruationpre -0.29 0.07 -0.44 -0.15 1710 1.00
menstruationyes -0.37 0.07 -0.52 -0.23 1527 1.00
fertile 0.17 0.16 -0.14 0.47 1499 1.00
fertile_mean 1.23 0.74 -0.06 2.80 594 1.00
includedhorm_contra:menstruationpre 0.21 0.09 0.03 0.38 1733 1.00
includedhorm_contra:menstruationyes 0.34 0.09 0.16 0.53 1571 1.00
includedhorm_contra:fertile -0.24 0.20 -0.62 0.15 1518 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich Komplimente von anderen Männern erhalten.
47. I received compliments from other men.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 19277 | 0.65 |
2 | Stimme überwiegend nicht zu | 2631 | 0.09 |
3 | Stimme eher nicht zu | 2303 | 0.08 |
4 | Stimme eher zu | 2754 | 0.09 |
5 | Stimme überwiegend zu | 1518 | 0.05 |
6 | Stimme voll zu | 1390 | 0.05 |
Family: cumulative(logit)
Formula: extra_pair_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 55308.76; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.57 0.06 1.46 1.68 1022 1.00
sd(fertile) 1.13 0.20 0.69 1.48 192 1.02
sd(menstruationpre) 0.53 0.09 0.34 0.70 211 1.01
sd(menstruationyes) 0.62 0.08 0.45 0.77 330 1.00
cor(Intercept,fertile) 0.01 0.13 -0.22 0.29 372 1.01
cor(Intercept,menstruationpre) 0.09 0.14 -0.16 0.37 365 1.01
cor(fertile,menstruationpre) 0.36 0.22 -0.17 0.70 123 1.02
cor(Intercept,menstruationyes) -0.13 0.11 -0.34 0.08 1161 1.00
cor(fertile,menstruationyes) 0.36 0.20 -0.10 0.66 151 1.01
cor(menstruationpre,menstruationyes) 0.82 0.11 0.56 0.97 230 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 0.63 0.14 0.36 0.89 791 1.01
Intercept[2] 1.24 0.14 0.97 1.50 791 1.01
Intercept[3] 1.83 0.14 1.56 2.10 795 1.01
Intercept[4] 2.80 0.14 2.53 3.07 803 1.01
Intercept[5] 3.74 0.14 3.46 4.01 827 1.01
includedhorm_contra -0.33 0.12 -0.56 -0.11 642 1.01
menstruationpre -0.28 0.08 -0.44 -0.12 1851 1.00
menstruationyes -0.22 0.08 -0.37 -0.06 1758 1.00
fertile 0.07 0.16 -0.24 0.37 1805 1.00
fertile_mean 0.13 0.57 -0.99 1.22 1270 1.00
includedhorm_contra:menstruationpre 0.18 0.10 -0.02 0.38 2080 1.00
includedhorm_contra:menstruationyes 0.15 0.10 -0.04 0.34 1817 1.00
includedhorm_contra:fertile -0.27 0.19 -0.64 0.11 1935 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich via Medien mit Freunden, Bekannten oder Kollegen geflirtet.
48. I flirted via media with friends, acquaintances, or colleagues.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 26262 | 0.88 |
2 | Stimme überwiegend nicht zu | 1237 | 0.04 |
3 | Stimme eher nicht zu | 763 | 0.03 |
4 | Stimme eher zu | 825 | 0.03 |
5 | Stimme überwiegend zu | 355 | 0.01 |
6 | Stimme voll zu | 431 | 0.01 |
Family: cumulative(logit)
Formula: extra_pair_4 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 21161.83; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.57 0.11 2.35 2.80 658 1.01
sd(fertile) 1.93 0.27 1.39 2.43 408 1.02
sd(menstruationpre) 0.82 0.13 0.55 1.08 501 1.01
sd(menstruationyes) 0.68 0.16 0.34 0.97 329 1.02
cor(Intercept,fertile) 0.00 0.14 -0.26 0.28 1331 1.01
cor(Intercept,menstruationpre) 0.03 0.15 -0.27 0.33 1174 1.00
cor(fertile,menstruationpre) 0.25 0.19 -0.16 0.57 333 1.02
cor(Intercept,menstruationyes) -0.04 0.18 -0.39 0.32 1475 1.00
cor(fertile,menstruationyes) 0.28 0.22 -0.24 0.63 255 1.02
cor(menstruationpre,menstruationyes) 0.72 0.16 0.36 0.96 590 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 3.18 0.23 2.73 3.63 590 1.01
Intercept[2] 3.94 0.23 3.48 4.39 598 1.01
Intercept[3] 4.55 0.23 4.09 5.01 614 1.01
Intercept[4] 5.56 0.24 5.10 6.02 617 1.01
Intercept[5] 6.44 0.24 5.96 6.91 635 1.01
includedhorm_contra -0.61 0.20 -1.01 -0.21 405 1.01
menstruationpre -0.36 0.17 -0.69 -0.04 1796 1.00
menstruationyes -0.22 0.16 -0.54 0.08 1333 1.01
fertile -0.11 0.33 -0.75 0.54 1707 1.00
fertile_mean 0.01 0.83 -1.69 1.64 1337 1.00
includedhorm_contra:menstruationpre 0.27 0.17 -0.06 0.60 2039 1.00
includedhorm_contra:menstruationyes 0.22 0.16 -0.10 0.53 2174 1.00
includedhorm_contra:fertile -0.30 0.33 -0.97 0.34 2136 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… bin ich ohne meinen Partner ausgegangen.
51. I went out without my partner.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 21919 | 0.73 |
2 | Stimme überwiegend nicht zu | 991 | 0.03 |
3 | Stimme eher nicht zu | 877 | 0.03 |
4 | Stimme eher zu | 1804 | 0.06 |
5 | Stimme überwiegend zu | 1429 | 0.05 |
6 | Stimme voll zu | 2853 | 0.1 |
Family: cumulative(logit)
Formula: extra_pair_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 46661.05; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.33 0.05 1.23 1.44 832 1.01
sd(fertile) 1.16 0.20 0.74 1.54 250 1.02
sd(menstruationpre) 0.43 0.13 0.17 0.66 219 1.02
sd(menstruationyes) 0.67 0.09 0.49 0.84 420 1.02
cor(Intercept,fertile) -0.18 0.12 -0.40 0.08 802 1.01
cor(Intercept,menstruationpre) 0.10 0.19 -0.23 0.52 407 1.01
cor(fertile,menstruationpre) 0.17 0.29 -0.51 0.63 201 1.02
cor(Intercept,menstruationyes) -0.12 0.11 -0.33 0.11 643 1.01
cor(fertile,menstruationyes) 0.43 0.17 0.04 0.73 250 1.01
cor(menstruationpre,menstruationyes) 0.64 0.17 0.24 0.91 268 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 1.43 0.13 1.17 1.67 1109 1.00
Intercept[2] 1.67 0.13 1.41 1.91 1111 1.00
Intercept[3] 1.89 0.13 1.63 2.13 979 1.00
Intercept[4] 2.40 0.13 2.15 2.65 988 1.00
Intercept[5] 2.93 0.13 2.67 3.17 1007 1.00
includedhorm_contra 0.29 0.11 0.08 0.51 769 1.01
menstruationpre -0.06 0.09 -0.24 0.12 1695 1.00
menstruationyes -0.06 0.09 -0.23 0.12 1889 1.00
fertile 0.29 0.18 -0.07 0.65 1734 1.00
fertile_mean -0.96 0.56 -2.10 0.13 1510 1.00
includedhorm_contra:menstruationpre -0.02 0.10 -0.22 0.18 1933 1.00
includedhorm_contra:menstruationyes 0.15 0.11 -0.06 0.36 1859 1.00
includedhorm_contra:fertile -0.24 0.21 -0.66 0.18 1718 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… bin ich ohne meinen Partner an einen Ort gegangen, wo man Männer treffen kann.
52. I went out without my partner to a social event where one might meet men.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 18929 | 0.63 |
2 | Stimme überwiegend nicht zu | 1310 | 0.04 |
3 | Stimme eher nicht zu | 1403 | 0.05 |
4 | Stimme eher zu | 2853 | 0.1 |
5 | Stimme überwiegend zu | 2036 | 0.07 |
6 | Stimme voll zu | 3342 | 0.11 |
Family: cumulative(logit)
Formula: extra_pair_6 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 54212.02; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.97 0.07 1.84 2.11 909 1.00
sd(fertile) 1.58 0.15 1.28 1.87 440 1.01
sd(menstruationpre) 0.46 0.11 0.18 0.65 189 1.03
sd(menstruationyes) 0.62 0.09 0.43 0.77 358 1.01
cor(Intercept,fertile) -0.04 0.10 -0.24 0.15 1820 1.00
cor(Intercept,menstruationpre) -0.05 0.17 -0.37 0.32 1154 1.00
cor(fertile,menstruationpre) 0.28 0.19 -0.13 0.59 307 1.01
cor(Intercept,menstruationyes) -0.06 0.12 -0.28 0.19 1949 1.00
cor(fertile,menstruationyes) 0.23 0.14 -0.08 0.48 353 1.01
cor(menstruationpre,menstruationyes) 0.62 0.17 0.20 0.90 172 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 1.16 0.16 0.85 1.47 543 1.01
Intercept[2] 1.46 0.16 1.15 1.78 547 1.01
Intercept[3] 1.81 0.16 1.50 2.12 548 1.01
Intercept[4] 2.60 0.16 2.29 2.92 552 1.01
Intercept[5] 3.36 0.16 3.05 3.68 557 1.01
includedhorm_contra 0.43 0.15 0.14 0.73 399 1.01
menstruationpre -0.10 0.09 -0.27 0.07 2003 1.00
menstruationyes -0.15 0.09 -0.32 0.02 1925 1.00
fertile 0.06 0.19 -0.32 0.43 1915 1.00
fertile_mean -0.41 0.66 -1.74 0.88 1153 1.00
includedhorm_contra:menstruationpre 0.05 0.10 -0.15 0.24 2191 1.00
includedhorm_contra:menstruationyes 0.20 0.10 0.00 0.40 2039 1.00
includedhorm_contra:fertile -0.13 0.22 -0.55 0.29 1885 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich mir Gedanken über einen anderen potentiellen Partner gemacht.
53. I thought about another potential partner.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 22819 | 0.76 |
2 | Stimme überwiegend nicht zu | 2032 | 0.07 |
3 | Stimme eher nicht zu | 1579 | 0.05 |
4 | Stimme eher zu | 1865 | 0.06 |
5 | Stimme überwiegend zu | 875 | 0.03 |
6 | Stimme voll zu | 703 | 0.02 |
Family: cumulative(logit)
Formula: extra_pair_7 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 34839.06; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.70 0.10 2.52 2.91 629 1.00
sd(fertile) 2.41 0.19 2.05 2.79 625 1.01
sd(menstruationpre) 1.03 0.10 0.84 1.23 1095 1.00
sd(menstruationyes) 1.08 0.09 0.89 1.26 784 1.00
cor(Intercept,fertile) -0.21 0.08 -0.37 -0.04 1684 1.00
cor(Intercept,menstruationpre) 0.05 0.10 -0.16 0.25 1512 1.00
cor(fertile,menstruationpre) 0.24 0.10 0.02 0.44 756 1.00
cor(Intercept,menstruationyes) -0.03 0.10 -0.21 0.16 1632 1.00
cor(fertile,menstruationyes) 0.53 0.09 0.35 0.69 749 1.01
cor(menstruationpre,menstruationyes) 0.60 0.09 0.41 0.75 774 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 1.70 0.20 1.29 2.09 549 1
Intercept[2] 2.46 0.20 2.07 2.86 556 1
Intercept[3] 3.24 0.20 2.85 3.65 552 1
Intercept[4] 4.66 0.21 4.26 5.06 516 1
Intercept[5] 5.95 0.21 5.54 6.36 539 1
includedhorm_contra -0.67 0.19 -1.06 -0.31 493 1
menstruationpre -0.61 0.14 -0.88 -0.35 1838 1
menstruationyes -0.23 0.12 -0.48 0.01 1480 1
fertile 0.50 0.24 0.03 0.98 1304 1
fertile_mean -0.04 0.77 -1.65 1.43 1460 1
includedhorm_contra:menstruationpre 0.35 0.15 0.06 0.63 1868 1
includedhorm_contra:menstruationyes 0.07 0.14 -0.21 0.36 1954 1
includedhorm_contra:fertile -0.58 0.28 -1.14 -0.01 1257 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich mit Männern geflirtet, die ich nicht kannte.
50. I flirted with strangers.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 26492 | 0.89 |
2 | Stimme überwiegend nicht zu | 1258 | 0.04 |
3 | Stimme eher nicht zu | 880 | 0.03 |
4 | Stimme eher zu | 766 | 0.03 |
5 | Stimme überwiegend zu | 277 | 0.01 |
6 | Stimme voll zu | 200 | 0.01 |
Family: cumulative(logit)
Formula: extra_pair_8 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 22448.63; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.82 0.08 1.68 1.98 831 1.00
sd(fertile) 0.69 0.32 0.07 1.28 157 1.01
sd(menstruationpre) 0.19 0.14 0.01 0.50 337 1.01
sd(menstruationyes) 0.28 0.17 0.01 0.62 341 1.01
cor(Intercept,fertile) -0.32 0.26 -0.77 0.29 1704 1.00
cor(Intercept,menstruationpre) -0.02 0.37 -0.72 0.74 2803 1.00
cor(fertile,menstruationpre) 0.01 0.44 -0.81 0.81 831 1.00
cor(Intercept,menstruationyes) -0.06 0.30 -0.65 0.58 2529 1.00
cor(fertile,menstruationyes) -0.07 0.42 -0.84 0.70 591 1.01
cor(menstruationpre,menstruationyes) 0.25 0.44 -0.71 0.90 495 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 2.75 0.17 2.43 3.09 1253 1
Intercept[2] 3.46 0.17 3.13 3.80 1258 1
Intercept[3] 4.15 0.17 3.82 4.49 1261 1
Intercept[4] 5.23 0.18 4.90 5.58 1349 1
Intercept[5] 6.20 0.19 5.83 6.57 1463 1
includedhorm_contra -0.40 0.15 -0.69 -0.10 842 1
menstruationpre -0.37 0.12 -0.62 -0.13 2019 1
menstruationyes -0.22 0.12 -0.47 0.01 2275 1
fertile 0.26 0.25 -0.22 0.75 2262 1
fertile_mean -0.26 0.69 -1.62 1.04 1597 1
includedhorm_contra:menstruationpre 0.32 0.14 0.05 0.60 2446 1
includedhorm_contra:menstruationyes 0.33 0.13 0.08 0.59 2924 1
includedhorm_contra:fertile -0.21 0.26 -0.74 0.30 2198 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich mit Freunden, Kollegen oder Bekannten geflirtet.
49. I flirted with friends, acquaintances, or colleagues.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 25338 | 0.85 |
2 | Stimme überwiegend nicht zu | 1245 | 0.04 |
3 | Stimme eher nicht zu | 995 | 0.03 |
4 | Stimme eher zu | 1262 | 0.04 |
5 | Stimme überwiegend zu | 522 | 0.02 |
6 | Stimme voll zu | 511 | 0.02 |
Family: cumulative(logit)
Formula: extra_pair_9 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 28373.84; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.00 0.08 1.84 2.18 787 1.01
sd(fertile) 1.41 0.21 1.00 1.82 422 1.01
sd(menstruationpre) 0.53 0.14 0.25 0.79 330 1.01
sd(menstruationyes) 0.62 0.14 0.30 0.88 272 1.02
cor(Intercept,fertile) -0.17 0.13 -0.41 0.09 2484 1.00
cor(Intercept,menstruationpre) 0.11 0.19 -0.26 0.47 1265 1.00
cor(fertile,menstruationpre) -0.35 0.28 -0.86 0.17 295 1.02
cor(Intercept,menstruationyes) 0.06 0.17 -0.26 0.40 767 1.01
cor(fertile,menstruationyes) 0.33 0.22 -0.15 0.70 353 1.01
cor(menstruationpre,menstruationyes) 0.27 0.28 -0.36 0.72 269 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 2.39 0.18 2.05 2.73 825 1
Intercept[2] 2.93 0.18 2.58 3.27 827 1
Intercept[3] 3.47 0.18 3.13 3.82 812 1
Intercept[4] 4.53 0.18 4.19 4.88 850 1
Intercept[5] 5.45 0.18 5.09 5.81 861 1
includedhorm_contra -0.51 0.16 -0.82 -0.20 506 1
menstruationpre -0.40 0.13 -0.65 -0.15 2240 1
menstruationyes -0.21 0.12 -0.44 0.02 2380 1
fertile 0.34 0.23 -0.11 0.78 2133 1
fertile_mean 0.31 0.71 -1.02 1.72 1529 1
includedhorm_contra:menstruationpre 0.27 0.13 0.01 0.53 2933 1
includedhorm_contra:menstruationyes 0.01 0.13 -0.25 0.26 3015 1
includedhorm_contra:fertile -0.45 0.26 -0.98 0.06 2528 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
choice | value | frequency | percent |
---|---|---|---|
0 | NA | 29467 | 0.99 |
1 | NA | 266 | 0.01 |
2 | NA | 134 | 0 |
Family: cumulative(logit)
Formula: extra_pair_intimacy_sex ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26567)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 2813.33; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.93 0.28 2.42 3.52 857 1.00
sd(fertile) 1.14 0.64 0.07 2.45 686 1.00
sd(menstruationpre) 0.26 0.20 0.01 0.73 1972 1.00
sd(menstruationyes) 0.57 0.35 0.03 1.31 598 1.01
cor(Intercept,fertile) 0.21 0.33 -0.51 0.81 4000 1.00
cor(Intercept,menstruationpre) 0.05 0.44 -0.78 0.83 4000 1.00
cor(fertile,menstruationpre) 0.00 0.45 -0.80 0.81 4000 1.00
cor(Intercept,menstruationyes) 0.00 0.35 -0.71 0.67 4000 1.00
cor(fertile,menstruationyes) -0.11 0.42 -0.84 0.71 1701 1.00
cor(menstruationpre,menstruationyes) 0.03 0.45 -0.80 0.83 1486 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 6.85 0.49 5.91 7.86 1659 1
Intercept[2] 8.28 0.50 7.33 9.31 1686 1
includedhorm_contra -1.28 0.38 -2.02 -0.55 1481 1
menstruationpre -0.09 0.32 -0.78 0.49 4000 1
menstruationyes -0.04 0.40 -0.90 0.70 3163 1
fertile -0.32 0.76 -2.04 0.95 1895 1
fertile_mean -0.82 1.33 -3.97 1.37 4000 1
includedhorm_contra:menstruationpre -0.20 0.38 -0.97 0.54 4000 1
includedhorm_contra:menstruationyes -0.07 0.37 -0.82 0.65 4000 1
includedhorm_contra:fertile -0.24 0.65 -1.55 0.98 4000 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich meinen Partner gefragt, mit wem er den Tag verbracht hat.
33. I asked my partner with whom he spent the day.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 16788 | 0.56 |
2 | Stimme überwiegend nicht zu | 1826 | 0.06 |
3 | Stimme eher nicht zu | 2111 | 0.07 |
4 | Stimme eher zu | 3706 | 0.12 |
5 | Stimme überwiegend zu | 2333 | 0.08 |
6 | Stimme voll zu | 3113 | 0.1 |
Family: cumulative(logit)
Formula: jealousy_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26546)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 58931.67; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.10 0.07 1.97 2.23 593 1.00
sd(fertile) 1.55 0.14 1.26 1.81 575 1.01
sd(menstruationpre) 0.56 0.10 0.34 0.73 316 1.01
sd(menstruationyes) 0.62 0.09 0.44 0.77 378 1.01
cor(Intercept,fertile) -0.03 0.09 -0.21 0.15 2098 1.00
cor(Intercept,menstruationpre) 0.20 0.13 -0.06 0.47 776 1.01
cor(fertile,menstruationpre) 0.14 0.17 -0.25 0.43 359 1.02
cor(Intercept,menstruationyes) 0.10 0.12 -0.13 0.34 1612 1.00
cor(fertile,menstruationyes) 0.32 0.13 0.04 0.56 542 1.01
cor(menstruationpre,menstruationyes) 0.43 0.17 0.05 0.73 271 1.02
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 0.37 0.17 0.03 0.69 546 1.00
Intercept[2] 0.80 0.17 0.46 1.12 544 1.00
Intercept[3] 1.30 0.17 0.96 1.63 544 1.00
Intercept[4] 2.37 0.17 2.03 2.69 548 1.00
Intercept[5] 3.35 0.17 3.01 3.68 558 1.00
includedhorm_contra 0.19 0.14 -0.08 0.46 360 1.01
menstruationpre -0.12 0.09 -0.29 0.04 1831 1.00
menstruationyes -0.10 0.08 -0.26 0.06 2033 1.00
fertile -0.03 0.18 -0.38 0.32 1915 1.00
fertile_mean -0.94 0.75 -2.50 0.41 789 1.00
includedhorm_contra:menstruationpre 0.08 0.10 -0.12 0.27 1961 1.00
includedhorm_contra:menstruationyes 0.08 0.10 -0.11 0.28 2193 1.00
includedhorm_contra:fertile 0.09 0.21 -0.32 0.50 2121 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hat mir mein Partner gezeigt, dass er sich von mir sexuell angezogen fühlt.
45. My partner showed me that he was sexually attracted to me.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 7147 | 0.24 |
2 | Stimme überwiegend nicht zu | 2601 | 0.09 |
3 | Stimme eher nicht zu | 3986 | 0.13 |
4 | Stimme eher zu | 5240 | 0.18 |
5 | Stimme überwiegend zu | 4890 | 0.16 |
6 | Stimme voll zu | 6010 | 0.2 |
Family: cumulative(logit)
Formula: male_attention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 84166.42; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.38 0.04 1.30 1.47 1000 1.01
sd(fertile) 1.65 0.11 1.43 1.87 824 1.01
sd(menstruationpre) 0.73 0.06 0.61 0.85 711 1.01
sd(menstruationyes) 0.71 0.06 0.60 0.82 818 1.00
cor(Intercept,fertile) -0.27 0.06 -0.39 -0.14 1741 1.01
cor(Intercept,menstruationpre) -0.30 0.07 -0.43 -0.16 1782 1.01
cor(fertile,menstruationpre) 0.53 0.08 0.38 0.67 729 1.01
cor(Intercept,menstruationyes) -0.32 0.07 -0.45 -0.19 1831 1.00
cor(fertile,menstruationyes) 0.40 0.09 0.22 0.56 655 1.00
cor(menstruationpre,menstruationyes) 0.51 0.09 0.33 0.67 693 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.43 0.12 -1.66 -1.20 839 1.01
Intercept[2] -0.85 0.12 -1.09 -0.63 842 1.01
Intercept[3] -0.10 0.12 -0.34 0.12 843 1.01
Intercept[4] 0.81 0.12 0.58 1.04 851 1.00
Intercept[5] 1.83 0.12 1.61 2.06 865 1.00
includedhorm_contra 0.23 0.10 0.03 0.43 626 1.01
menstruationpre -0.05 0.07 -0.19 0.09 1539 1.00
menstruationyes -0.20 0.07 -0.33 -0.07 1487 1.00
fertile 0.15 0.15 -0.15 0.44 1573 1.00
fertile_mean 0.09 0.50 -0.87 1.08 1613 1.00
includedhorm_contra:menstruationpre -0.06 0.09 -0.25 0.11 1518 1.00
includedhorm_contra:menstruationyes -0.03 0.09 -0.20 0.14 1594 1.00
includedhorm_contra:fertile -0.48 0.19 -0.84 -0.12 1533 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hat mich mein Partner eifersüchtig gemacht.
34. My partner made me jealous.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 24376 | 0.82 |
2 | Stimme überwiegend nicht zu | 2162 | 0.07 |
3 | Stimme eher nicht zu | 1432 | 0.05 |
4 | Stimme eher zu | 1209 | 0.04 |
5 | Stimme überwiegend zu | 429 | 0.01 |
6 | Stimme voll zu | 268 | 0.01 |
Family: cumulative(logit)
Formula: male_jealousy_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 33123.36; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.81 0.07 1.67 1.96 1100 1.00
sd(fertile) 1.61 0.19 1.24 1.98 484 1.01
sd(menstruationpre) 0.54 0.16 0.19 0.81 255 1.02
sd(menstruationyes) 0.39 0.18 0.03 0.70 213 1.03
cor(Intercept,fertile) -0.24 0.10 -0.43 -0.03 3127 1.00
cor(Intercept,menstruationpre) 0.07 0.17 -0.25 0.42 2451 1.00
cor(fertile,menstruationpre) -0.05 0.26 -0.64 0.37 367 1.01
cor(Intercept,menstruationyes) -0.07 0.24 -0.58 0.46 3276 1.00
cor(fertile,menstruationyes) 0.04 0.30 -0.66 0.55 603 1.01
cor(menstruationpre,menstruationyes) 0.26 0.34 -0.56 0.81 453 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 2.62 0.16 2.32 2.94 1402 1
Intercept[2] 3.42 0.16 3.11 3.74 1431 1
Intercept[3] 4.17 0.16 3.87 4.50 1471 1
Intercept[4] 5.36 0.17 5.04 5.70 1534 1
Intercept[5] 6.41 0.17 6.07 6.76 1646 1
includedhorm_contra 0.44 0.14 0.15 0.71 879 1
menstruationpre -0.09 0.13 -0.34 0.16 2315 1
menstruationyes -0.01 0.11 -0.23 0.20 2682 1
fertile 0.19 0.24 -0.29 0.66 3154 1
fertile_mean 0.41 0.64 -0.84 1.73 2130 1
includedhorm_contra:menstruationpre 0.10 0.13 -0.15 0.35 4000 1
includedhorm_contra:menstruationyes 0.04 0.12 -0.18 0.27 4000 1
includedhorm_contra:fertile -0.04 0.25 -0.52 0.47 4000 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hat mein Partner auf meinen Umgang mit anderen Männern eifersüchtig reagiert.
35. My partner was jealous of my contact with other men.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 24805 | 0.83 |
2 | Stimme überwiegend nicht zu | 1817 | 0.06 |
3 | Stimme eher nicht zu | 1312 | 0.04 |
4 | Stimme eher zu | 1176 | 0.04 |
5 | Stimme überwiegend zu | 433 | 0.01 |
6 | Stimme voll zu | 334 | 0.01 |
Family: cumulative(logit)
Formula: male_jealousy_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26546)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 30431.82; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.99 0.08 1.84 2.17 738 1.00
sd(fertile) 1.65 0.21 1.23 2.05 449 1.01
sd(menstruationpre) 0.57 0.14 0.26 0.81 262 1.02
sd(menstruationyes) 0.72 0.12 0.47 0.94 456 1.01
cor(Intercept,fertile) -0.17 0.11 -0.38 0.05 1551 1.00
cor(Intercept,menstruationpre) -0.03 0.17 -0.34 0.32 1477 1.00
cor(fertile,menstruationpre) 0.28 0.21 -0.18 0.63 314 1.01
cor(Intercept,menstruationyes) 0.12 0.13 -0.15 0.39 1171 1.00
cor(fertile,menstruationyes) 0.46 0.15 0.11 0.72 439 1.01
cor(menstruationpre,menstruationyes) 0.77 0.14 0.46 0.96 451 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 2.46 0.18 2.11 2.82 836 1
Intercept[2] 3.21 0.19 2.85 3.57 840 1
Intercept[3] 3.95 0.19 3.59 4.33 845 1
Intercept[4] 5.12 0.19 4.75 5.50 855 1
Intercept[5] 6.07 0.19 5.69 6.45 889 1
includedhorm_contra -0.08 0.16 -0.40 0.23 686 1
menstruationpre -0.24 0.12 -0.47 0.01 1593 1
menstruationyes -0.49 0.13 -0.74 -0.23 1748 1
fertile 0.11 0.25 -0.37 0.58 1979 1
fertile_mean 0.65 0.72 -0.64 2.14 1613 1
includedhorm_contra:menstruationpre 0.20 0.13 -0.06 0.47 2124 1
includedhorm_contra:menstruationyes 0.34 0.14 0.07 0.61 2381 1
includedhorm_contra:fertile -0.11 0.27 -0.65 0.41 2138 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hat mir mein Partner erzählt, er habe Komplimente von anderen Frauen erhalten.
36. My partner told me he had received compliments from other women.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 27378 | 0.92 |
2 | Stimme überwiegend nicht zu | 1128 | 0.04 |
3 | Stimme eher nicht zu | 600 | 0.02 |
4 | Stimme eher zu | 403 | 0.01 |
5 | Stimme überwiegend zu | 191 | 0.01 |
6 | Stimme voll zu | 176 | 0.01 |
Family: cumulative(logit)
Formula: male_jealousy_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 16673.68; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.05 0.09 1.87 2.22 1126 1.00
sd(fertile) 0.63 0.34 0.05 1.31 302 1.02
sd(menstruationpre) 0.41 0.22 0.03 0.84 465 1.01
sd(menstruationyes) 0.16 0.12 0.01 0.44 824 1.00
cor(Intercept,fertile) 0.28 0.29 -0.36 0.82 3245 1.00
cor(Intercept,menstruationpre) 0.11 0.28 -0.46 0.68 4000 1.00
cor(fertile,menstruationpre) 0.17 0.41 -0.68 0.82 435 1.01
cor(Intercept,menstruationyes) -0.04 0.40 -0.78 0.73 4000 1.00
cor(fertile,menstruationyes) 0.00 0.45 -0.81 0.80 2353 1.00
cor(menstruationpre,menstruationyes) -0.09 0.44 -0.85 0.75 2769 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 3.66 0.21 3.24 4.07 1992 1
Intercept[2] 4.55 0.21 4.13 4.97 1998 1
Intercept[3] 5.28 0.21 4.86 5.69 2024 1
Intercept[4] 6.12 0.21 5.69 6.54 1774 1
Intercept[5] 6.92 0.22 6.47 7.35 1758 1
includedhorm_contra -0.05 0.18 -0.40 0.30 1613 1
menstruationpre -0.12 0.18 -0.50 0.22 2054 1
menstruationyes -0.02 0.14 -0.30 0.26 4000 1
fertile -0.32 0.33 -1.01 0.28 1821 1
fertile_mean -0.44 0.82 -2.19 1.07 2427 1
includedhorm_contra:menstruationpre 0.07 0.16 -0.25 0.38 4000 1
includedhorm_contra:menstruationyes 0.14 0.15 -0.16 0.43 4000 1
includedhorm_contra:fertile -0.26 0.30 -0.86 0.32 4000 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hat mich mein Partner gefragt, mit wem ich den Tag verbracht habe.
43. My partner asked me with whom I spent the day.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 17532 | 0.59 |
2 | Stimme überwiegend nicht zu | 1787 | 0.06 |
3 | Stimme eher nicht zu | 2043 | 0.07 |
4 | Stimme eher zu | 3564 | 0.12 |
5 | Stimme überwiegend zu | 2062 | 0.07 |
6 | Stimme voll zu | 2888 | 0.1 |
Family: cumulative(logit)
Formula: male_mate_retention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 56670.01; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.18 0.07 2.04 2.33 570 1.00
sd(fertile) 1.68 0.15 1.36 1.97 635 1.00
sd(menstruationpre) 0.66 0.08 0.48 0.82 343 1.01
sd(menstruationyes) 0.71 0.08 0.55 0.85 680 1.00
cor(Intercept,fertile) -0.08 0.09 -0.25 0.10 2077 1.00
cor(Intercept,menstruationpre) 0.01 0.11 -0.20 0.24 1698 1.00
cor(fertile,menstruationpre) 0.16 0.15 -0.17 0.40 306 1.01
cor(Intercept,menstruationyes) -0.15 0.10 -0.35 0.05 2010 1.00
cor(fertile,menstruationyes) 0.39 0.12 0.13 0.60 481 1.00
cor(menstruationpre,menstruationyes) 0.52 0.13 0.26 0.76 380 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 0.58 0.17 0.24 0.91 489 1.01
Intercept[2] 1.00 0.17 0.66 1.33 491 1.01
Intercept[3] 1.52 0.17 1.18 1.84 493 1.01
Intercept[4] 2.61 0.17 2.27 2.94 494 1.01
Intercept[5] 3.54 0.17 3.19 3.87 503 1.01
includedhorm_contra 0.08 0.15 -0.23 0.37 358 1.00
menstruationpre -0.12 0.09 -0.29 0.05 1813 1.00
menstruationyes -0.08 0.09 -0.25 0.08 1904 1.00
fertile -0.10 0.19 -0.47 0.26 1871 1.00
fertile_mean -0.32 0.69 -1.81 0.97 819 1.00
includedhorm_contra:menstruationpre 0.16 0.10 -0.05 0.36 2033 1.00
includedhorm_contra:menstruationyes 0.09 0.10 -0.11 0.30 1930 1.00
includedhorm_contra:fertile 0.20 0.22 -0.24 0.63 1780 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hat mir mein Partner gesagt, dass er mich liebt.
44. My partner told me he loved me.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 7590 | 0.25 |
2 | Stimme überwiegend nicht zu | 1225 | 0.04 |
3 | Stimme eher nicht zu | 2136 | 0.07 |
4 | Stimme eher zu | 3458 | 0.12 |
5 | Stimme überwiegend zu | 3508 | 0.12 |
6 | Stimme voll zu | 11959 | 0.4 |
Family: cumulative(logit)
Formula: male_mate_retention_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 61332.65; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.66 0.08 2.50 2.82 608 1.00
sd(fertile) 1.21 0.16 0.90 1.52 301 1.01
sd(menstruationpre) 0.57 0.09 0.37 0.73 347 1.01
sd(menstruationyes) 0.61 0.08 0.45 0.75 425 1.01
cor(Intercept,fertile) 0.02 0.13 -0.22 0.26 2014 1.00
cor(Intercept,menstruationpre) 0.27 0.14 0.00 0.54 993 1.00
cor(fertile,menstruationpre) -0.11 0.21 -0.57 0.26 186 1.01
cor(Intercept,menstruationyes) -0.05 0.13 -0.30 0.19 2363 1.00
cor(fertile,menstruationyes) 0.37 0.15 0.03 0.64 170 1.01
cor(menstruationpre,menstruationyes) 0.43 0.16 0.08 0.71 311 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.84 0.20 -2.24 -1.46 140 1.02
Intercept[2] -1.46 0.20 -1.86 -1.09 139 1.02
Intercept[3] -0.86 0.20 -1.26 -0.49 139 1.02
Intercept[4] 0.01 0.20 -0.38 0.39 138 1.02
Intercept[5] 0.91 0.20 0.51 1.29 139 1.02
includedhorm_contra 0.39 0.17 0.05 0.72 124 1.04
menstruationpre 0.03 0.07 -0.11 0.18 1451 1.00
menstruationyes 0.04 0.07 -0.11 0.18 1563 1.00
fertile 0.15 0.15 -0.14 0.44 2065 1.00
fertile_mean -0.43 0.80 -2.11 1.13 571 1.01
includedhorm_contra:menstruationpre -0.03 0.10 -0.22 0.16 1529 1.00
includedhorm_contra:menstruationyes -0.14 0.09 -0.32 0.05 1681 1.00
includedhorm_contra:fertile -0.32 0.19 -0.69 0.05 1916 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Haben Sie die letzte Nacht mit Ihrem Partner verbracht?
3. Did you spend last night with your partner?
choice | value | frequency | percent |
---|---|---|---|
1 | ja | 16379 | 0.55 |
2 | nein | 13523 | 0.45 |
Family: bernoulli(logit)
Formula: mate_retention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
Data: diary (Number of observations: 26568)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 24630.06; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.15 0.08 1.99 2.32 1122 1.00
sd(fertile) 2.09 0.19 1.73 2.45 676 1.00
sd(menstruationpre) 1.08 0.09 0.89 1.25 757 1.00
sd(menstruationyes) 1.15 0.11 0.95 1.37 1265 1.00
cor(Intercept,fertile) 0.01 0.10 -0.19 0.20 2131 1.00
cor(Intercept,menstruationpre) -0.13 0.10 -0.32 0.07 2032 1.00
cor(fertile,menstruationpre) 0.26 0.10 0.05 0.44 537 1.00
cor(Intercept,menstruationyes) 0.30 0.09 0.11 0.48 1701 1.00
cor(fertile,menstruationyes) 0.21 0.10 0.00 0.40 631 1.01
cor(menstruationpre,menstruationyes) 0.52 0.08 0.35 0.67 980 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept -0.64 0.17 -0.97 -0.28 773 1
includedhorm_contra 0.34 0.16 0.03 0.65 611 1
menstruationpre -0.01 0.11 -0.24 0.21 1823 1
menstruationyes -0.11 0.12 -0.34 0.12 1817 1
fertile 0.24 0.22 -0.16 0.66 2280 1
fertile_mean -0.36 0.72 -1.88 0.99 1501 1
includedhorm_contra:menstruationpre 0.16 0.14 -0.10 0.44 1843 1
includedhorm_contra:menstruationyes 0.27 0.14 -0.01 0.55 1925 1
includedhorm_contra:fertile 0.13 0.26 -0.39 0.65 2226 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Haben Sie seit Ihrem letzten Eintrag öffentlich Intimitäten (z.B. Händchenhalten, Küssen, in den Arm nehmen) ausgetauscht?
5. Did you display any forms of public affection (e.g. holding hands, kissing, hugging) with your partner?
choice | value | frequency | percent |
---|---|---|---|
0 | NA | 15931 | 0.53 |
1 | ja (1x) | 2720 | 0.09 |
2 | ja (mehrfach) | 11251 | 0.38 |
Family: cumulative(logit)
Formula: mate_retention_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26568)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 42813.55; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.24 0.05 1.14 1.35 1350 1.00
sd(fertile) 1.73 0.14 1.45 2.01 670 1.00
sd(menstruationpre) 0.81 0.07 0.67 0.95 703 1.01
sd(menstruationyes) 0.95 0.07 0.80 1.09 994 1.00
cor(Intercept,fertile) -0.28 0.08 -0.43 -0.12 1886 1.00
cor(Intercept,menstruationpre) -0.29 0.08 -0.44 -0.12 1807 1.00
cor(fertile,menstruationpre) 0.20 0.11 -0.03 0.39 619 1.00
cor(Intercept,menstruationyes) 0.07 0.09 -0.09 0.23 1148 1.00
cor(fertile,menstruationyes) 0.18 0.10 -0.02 0.37 598 1.00
cor(menstruationpre,menstruationyes) 0.39 0.09 0.21 0.57 584 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 0.19 0.11 -0.04 0.42 1436 1
Intercept[2] 0.65 0.11 0.43 0.89 1445 1
includedhorm_contra 0.07 0.10 -0.12 0.27 973 1
menstruationpre -0.04 0.08 -0.20 0.12 2100 1
menstruationyes -0.01 0.08 -0.17 0.16 2047 1
fertile -0.21 0.16 -0.52 0.11 2124 1
fertile_mean 0.23 0.49 -0.71 1.19 2064 1
includedhorm_contra:menstruationpre -0.07 0.10 -0.27 0.13 2164 1
includedhorm_contra:menstruationyes -0.20 0.11 -0.41 0.01 2188 1
includedhorm_contra:fertile -0.30 0.21 -0.70 0.11 2017 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich mich für meinen Partner besonders hübsch gemacht.
37. I made myself up especially for my partner.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 10603 | 0.35 |
2 | Stimme überwiegend nicht zu | 2841 | 0.1 |
3 | Stimme eher nicht zu | 4843 | 0.16 |
4 | Stimme eher zu | 5519 | 0.18 |
5 | Stimme überwiegend zu | 3674 | 0.12 |
6 | Stimme voll zu | 2396 | 0.08 |
Family: cumulative(logit)
Formula: mate_retention_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 78990.97; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.42 0.05 1.34 1.52 1201 1.00
sd(fertile) 1.67 0.12 1.44 1.91 592 1.00
sd(menstruationpre) 0.61 0.07 0.48 0.74 747 1.00
sd(menstruationyes) 0.78 0.06 0.66 0.90 651 1.00
cor(Intercept,fertile) -0.26 0.06 -0.38 -0.13 1727 1.00
cor(Intercept,menstruationpre) -0.25 0.08 -0.41 -0.08 2122 1.00
cor(fertile,menstruationpre) 0.38 0.10 0.17 0.56 825 1.00
cor(Intercept,menstruationyes) -0.19 0.07 -0.33 -0.05 1996 1.00
cor(fertile,menstruationyes) 0.48 0.08 0.31 0.63 676 1.01
cor(menstruationpre,menstruationyes) 0.46 0.10 0.25 0.66 463 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -0.61 0.13 -0.87 -0.37 775 1
Intercept[2] -0.06 0.13 -0.32 0.19 771 1
Intercept[3] 0.81 0.13 0.56 1.06 772 1
Intercept[4] 1.95 0.13 1.69 2.20 773 1
Intercept[5] 3.20 0.13 2.94 3.45 799 1
includedhorm_contra 0.22 0.11 0.00 0.44 655 1
menstruationpre -0.06 0.07 -0.20 0.08 2169 1
menstruationyes -0.14 0.07 -0.28 0.01 1603 1
fertile 0.03 0.15 -0.27 0.33 1435 1
fertile_mean -0.11 0.52 -1.17 0.89 1469 1
includedhorm_contra:menstruationpre 0.02 0.09 -0.16 0.19 1812 1
includedhorm_contra:menstruationyes 0.09 0.09 -0.08 0.28 1485 1
includedhorm_contra:fertile -0.27 0.19 -0.65 0.09 1449 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich meinem Partner gesagt, dass ich ihn liebe.
38. I told my partner I love him.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 7577 | 0.25 |
2 | Stimme überwiegend nicht zu | 1239 | 0.04 |
3 | Stimme eher nicht zu | 2205 | 0.07 |
4 | Stimme eher zu | 3522 | 0.12 |
5 | Stimme überwiegend zu | 3550 | 0.12 |
6 | Stimme voll zu | 11783 | 0.39 |
Family: cumulative(logit)
Formula: mate_retention_4 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 61074.44; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.73 0.09 2.57 2.90 488 1.01
sd(fertile) 1.01 0.17 0.67 1.32 167 1.03
sd(menstruationpre) 0.59 0.08 0.42 0.75 346 1.01
sd(menstruationyes) 0.58 0.08 0.42 0.73 425 1.01
cor(Intercept,fertile) 0.00 0.15 -0.28 0.29 2702 1.00
cor(Intercept,menstruationpre) 0.26 0.13 -0.01 0.51 1115 1.01
cor(fertile,menstruationpre) -0.43 0.23 -0.86 0.00 113 1.04
cor(Intercept,menstruationyes) 0.03 0.13 -0.22 0.29 2369 1.00
cor(fertile,menstruationyes) 0.18 0.18 -0.20 0.53 184 1.03
cor(menstruationpre,menstruationyes) 0.33 0.15 0.02 0.61 336 1.02
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.93 0.19 -2.32 -1.57 278 1.02
Intercept[2] -1.55 0.19 -1.93 -1.19 279 1.02
Intercept[3] -0.92 0.19 -1.30 -0.56 280 1.02
Intercept[4] -0.01 0.19 -0.39 0.35 280 1.02
Intercept[5] 0.92 0.19 0.54 1.28 282 1.02
includedhorm_contra 0.31 0.17 -0.04 0.63 196 1.01
menstruationpre 0.06 0.08 -0.09 0.21 2268 1.00
menstruationyes 0.05 0.07 -0.08 0.19 2241 1.00
fertile 0.13 0.14 -0.14 0.41 2141 1.00
fertile_mean -0.57 0.81 -2.30 0.93 529 1.01
includedhorm_contra:menstruationpre -0.01 0.10 -0.20 0.19 2131 1.00
includedhorm_contra:menstruationyes -0.12 0.09 -0.30 0.06 2198 1.00
includedhorm_contra:fertile -0.33 0.18 -0.69 0.00 2207 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich vor meinem Partner über andere Frauen gelästert.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 22085 | 0.74 |
2 | Stimme überwiegend nicht zu | 2475 | 0.08 |
3 | Stimme eher nicht zu | 1817 | 0.06 |
4 | Stimme eher zu | 2071 | 0.07 |
5 | Stimme überwiegend zu | 824 | 0.03 |
6 | Stimme voll zu | 604 | 0.02 |
Family: cumulative(logit)
Formula: mate_retention_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 44539.06; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.57 0.06 1.46 1.69 1368 1.00
sd(fertile) 1.37 0.19 0.98 1.73 415 1.00
sd(menstruationpre) 0.55 0.13 0.17 0.76 91 1.04
sd(menstruationyes) 0.78 0.09 0.61 0.94 537 1.00
cor(Intercept,fertile) -0.09 0.11 -0.30 0.14 2121 1.00
cor(Intercept,menstruationpre) 0.02 0.16 -0.26 0.39 241 1.02
cor(fertile,menstruationpre) 0.32 0.21 -0.17 0.66 238 1.01
cor(Intercept,menstruationyes) -0.10 0.10 -0.29 0.10 1536 1.00
cor(fertile,menstruationyes) 0.12 0.16 -0.23 0.41 395 1.01
cor(menstruationpre,menstruationyes) 0.07 0.23 -0.58 0.43 125 1.04
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 1.53 0.14 1.27 1.80 1800 1
Intercept[2] 2.21 0.14 1.94 2.48 1806 1
Intercept[3] 2.83 0.14 2.56 3.11 1831 1
Intercept[4] 3.98 0.14 3.70 4.25 1893 1
Intercept[5] 4.98 0.15 4.70 5.27 1962 1
includedhorm_contra 0.15 0.12 -0.08 0.39 1223 1
menstruationpre -0.13 0.10 -0.33 0.05 3203 1
menstruationyes -0.14 0.10 -0.33 0.06 3056 1
fertile -0.18 0.20 -0.56 0.20 2915 1
fertile_mean 0.43 0.59 -0.67 1.65 2333 1
includedhorm_contra:menstruationpre -0.05 0.11 -0.26 0.16 4000 1
includedhorm_contra:menstruationyes 0.01 0.11 -0.21 0.24 3093 1
includedhorm_contra:fertile -0.15 0.22 -0.60 0.26 2861 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… war ich in Bezug auf meinen Partner sehr anhänglich.
40. I was very attached to my partner.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 9646 | 0.32 |
2 | Stimme überwiegend nicht zu | 3944 | 0.13 |
3 | Stimme eher nicht zu | 5689 | 0.19 |
4 | Stimme eher zu | 6026 | 0.2 |
5 | Stimme überwiegend zu | 2967 | 0.1 |
6 | Stimme voll zu | 1603 | 0.05 |
Family: cumulative(logit)
Formula: mate_retention_6 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 74481.1; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.72 0.05 1.62 1.82 775 1.01
sd(fertile) 1.55 0.12 1.30 1.79 463 1.01
sd(menstruationpre) 0.74 0.06 0.61 0.86 666 1.00
sd(menstruationyes) 0.77 0.06 0.65 0.89 771 1.01
cor(Intercept,fertile) -0.08 0.07 -0.21 0.06 2119 1.00
cor(Intercept,menstruationpre) -0.02 0.08 -0.17 0.13 1992 1.00
cor(fertile,menstruationpre) 0.33 0.09 0.13 0.50 609 1.00
cor(Intercept,menstruationyes) -0.10 0.07 -0.23 0.04 1979 1.00
cor(fertile,menstruationyes) 0.24 0.10 0.04 0.42 519 1.00
cor(menstruationpre,menstruationyes) 0.53 0.09 0.34 0.69 438 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.00 0.14 -1.28 -0.74 494 1.01
Intercept[2] -0.14 0.14 -0.42 0.12 489 1.01
Intercept[3] 1.02 0.14 0.73 1.28 517 1.01
Intercept[4] 2.59 0.14 2.31 2.86 519 1.01
Intercept[5] 4.12 0.14 3.84 4.39 537 1.01
includedhorm_contra 0.39 0.12 0.15 0.62 374 1.00
menstruationpre -0.05 0.07 -0.20 0.09 2052 1.00
menstruationyes 0.15 0.07 0.01 0.29 1746 1.00
fertile -0.05 0.15 -0.35 0.24 1819 1.00
fertile_mean -0.49 0.60 -1.69 0.64 1026 1.01
includedhorm_contra:menstruationpre -0.06 0.09 -0.23 0.13 1826 1.00
includedhorm_contra:menstruationyes -0.09 0.09 -0.28 0.09 1747 1.00
includedhorm_contra:fertile -0.35 0.19 -0.72 0.02 1806 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
…hatte ich das Gefühl es verdient zu haben, als große Persönlichkeit angesehen zu werden.
27. I deserved to be seen as a great personality.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 10545 | 0.35 |
2 | Stimme überwiegend nicht zu | 4120 | 0.14 |
3 | Stimme eher nicht zu | 6077 | 0.2 |
4 | Stimme eher zu | 6020 | 0.2 |
5 | Stimme überwiegend zu | 2289 | 0.08 |
6 | Stimme voll zu | 826 | 0.03 |
Family: cumulative(logit)
Formula: NARQ_admiration_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26546)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 54982.3; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 3.30 0.09 3.13 3.48 443 1.01
sd(fertile) 1.81 0.13 1.56 2.07 580 1.00
sd(menstruationpre) 0.64 0.07 0.49 0.78 438 1.01
sd(menstruationyes) 0.78 0.06 0.65 0.90 515 1.01
cor(Intercept,fertile) -0.11 0.08 -0.26 0.03 2161 1.00
cor(Intercept,menstruationpre) -0.18 0.10 -0.37 0.01 2096 1.00
cor(fertile,menstruationpre) 0.10 0.12 -0.17 0.32 387 1.01
cor(Intercept,menstruationyes) -0.27 0.08 -0.43 -0.11 1883 1.00
cor(fertile,menstruationyes) 0.16 0.11 -0.06 0.36 365 1.00
cor(menstruationpre,menstruationyes) 0.54 0.11 0.31 0.75 282 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.32 0.24 -1.76 -0.84 121 1.04
Intercept[2] 0.16 0.24 -0.29 0.64 121 1.04
Intercept[3] 2.11 0.24 1.66 2.60 121 1.04
Intercept[4] 4.55 0.24 4.10 5.04 122 1.04
Intercept[5] 6.70 0.24 6.25 7.20 125 1.04
includedhorm_contra -0.30 0.23 -0.73 0.14 77 1.06
menstruationpre -0.04 0.08 -0.19 0.11 1690 1.00
menstruationyes -0.18 0.08 -0.34 -0.03 1509 1.00
fertile 0.10 0.17 -0.24 0.44 1418 1.00
fertile_mean 0.72 0.90 -0.91 2.67 532 1.00
includedhorm_contra:menstruationpre 0.04 0.10 -0.14 0.23 1714 1.00
includedhorm_contra:menstruationyes 0.17 0.10 -0.03 0.38 1435 1.00
includedhorm_contra:fertile -0.24 0.22 -0.68 0.17 1482 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich viel Kraft daraus gezogen, eine ganz besondere Person zu sein.
28. Being a very special person gave me a lot of strength.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 10803 | 0.36 |
2 | Stimme überwiegend nicht zu | 3991 | 0.13 |
3 | Stimme eher nicht zu | 5827 | 0.2 |
4 | Stimme eher zu | 6000 | 0.2 |
5 | Stimme überwiegend zu | 2397 | 0.08 |
6 | Stimme voll zu | 859 | 0.03 |
Family: cumulative(logit)
Formula: NARQ_admiration_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26546)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 56131.73; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 3.20 0.09 3.04 3.39 490 1.00
sd(fertile) 1.75 0.13 1.49 2.02 523 1.01
sd(menstruationpre) 0.64 0.08 0.47 0.79 363 1.01
sd(menstruationyes) 0.81 0.06 0.68 0.93 708 1.00
cor(Intercept,fertile) -0.04 0.08 -0.19 0.12 2122 1.00
cor(Intercept,menstruationpre) -0.25 0.10 -0.43 -0.05 2597 1.00
cor(fertile,menstruationpre) 0.14 0.13 -0.14 0.37 382 1.01
cor(Intercept,menstruationyes) -0.27 0.08 -0.42 -0.12 2360 1.00
cor(fertile,menstruationyes) 0.21 0.10 0.00 0.39 555 1.00
cor(menstruationpre,menstruationyes) 0.56 0.10 0.36 0.76 329 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -1.35 0.21 -1.75 -0.93 315 1.01
Intercept[2] 0.07 0.21 -0.34 0.48 312 1.01
Intercept[3] 1.87 0.21 1.47 2.28 315 1.01
Intercept[4] 4.15 0.21 3.74 4.56 321 1.01
Intercept[5] 6.24 0.21 5.84 6.66 338 1.01
includedhorm_contra -0.41 0.20 -0.81 -0.03 178 1.01
menstruationpre -0.13 0.08 -0.28 0.02 1846 1.00
menstruationyes -0.25 0.08 -0.41 -0.10 2182 1.00
fertile -0.15 0.17 -0.49 0.18 1597 1.00
fertile_mean 0.26 0.77 -1.22 1.82 712 1.01
includedhorm_contra:menstruationpre 0.21 0.10 0.02 0.40 2145 1.00
includedhorm_contra:menstruationyes 0.29 0.10 0.10 0.49 2328 1.00
includedhorm_contra:fertile 0.01 0.20 -0.39 0.42 1724 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich es geschafft, mit meinen besonderen Beiträgen im Mittelpunkt zu stehen.
29. I managed to be the center of attention with my outstanding contributions
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 11050 | 0.37 |
2 | Stimme überwiegend nicht zu | 3939 | 0.13 |
3 | Stimme eher nicht zu | 5601 | 0.19 |
4 | Stimme eher zu | 5852 | 0.2 |
5 | Stimme überwiegend zu | 2510 | 0.08 |
6 | Stimme voll zu | 925 | 0.03 |
Family: cumulative(logit)
Formula: NARQ_admiration_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26546)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 64972.74; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.32 0.07 2.19 2.46 532 1.00
sd(fertile) 1.47 0.13 1.21 1.73 575 1.00
sd(menstruationpre) 0.55 0.08 0.37 0.70 379 1.00
sd(menstruationyes) 0.72 0.07 0.59 0.85 564 1.00
cor(Intercept,fertile) -0.17 0.08 -0.33 -0.01 2093 1.00
cor(Intercept,menstruationpre) -0.28 0.10 -0.47 -0.09 1991 1.00
cor(fertile,menstruationpre) 0.22 0.15 -0.11 0.48 332 1.00
cor(Intercept,menstruationyes) -0.25 0.08 -0.40 -0.09 1857 1.00
cor(fertile,menstruationyes) 0.33 0.11 0.10 0.54 312 1.01
cor(menstruationpre,menstruationyes) 0.69 0.11 0.46 0.88 143 1.02
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -0.87 0.17 -1.19 -0.54 316 1.01
Intercept[2] 0.19 0.17 -0.13 0.52 317 1.01
Intercept[3] 1.54 0.17 1.22 1.87 316 1.01
Intercept[4] 3.35 0.17 3.03 3.68 316 1.01
Intercept[5] 5.08 0.17 4.75 5.42 332 1.01
includedhorm_contra -0.21 0.15 -0.51 0.09 232 1.01
menstruationpre -0.07 0.07 -0.21 0.06 1780 1.00
menstruationyes -0.16 0.07 -0.31 -0.03 1460 1.00
fertile 0.02 0.15 -0.28 0.32 1919 1.00
fertile_mean 0.26 0.67 -1.03 1.69 613 1.00
includedhorm_contra:menstruationpre 0.03 0.09 -0.14 0.21 1982 1.00
includedhorm_contra:menstruationyes 0.14 0.09 -0.04 0.31 1755 1.00
includedhorm_contra:fertile -0.09 0.18 -0.45 0.28 1971 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… habe ich genervt reagiert, wenn eine andere Frau mir die Schau gestohlen hat.
30. I reacted annoyed when another woman stole the show from me.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 24605 | 0.82 |
2 | Stimme überwiegend nicht zu | 2457 | 0.08 |
3 | Stimme eher nicht zu | 1357 | 0.05 |
4 | Stimme eher zu | 960 | 0.03 |
5 | Stimme überwiegend zu | 276 | 0.01 |
6 | Stimme voll zu | 221 | 0.01 |
Family: cumulative(logit)
Formula: NARQ_rivalry_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 29128.25; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.07 0.08 1.92 2.22 730 1.01
sd(fertile) 1.15 0.22 0.72 1.58 520 1.01
sd(menstruationpre) 0.26 0.14 0.01 0.52 337 1.01
sd(menstruationyes) 0.28 0.14 0.02 0.55 523 1.01
cor(Intercept,fertile) -0.32 0.13 -0.57 -0.06 4000 1.00
cor(Intercept,menstruationpre) -0.02 0.30 -0.62 0.58 4000 1.00
cor(fertile,menstruationpre) -0.29 0.36 -0.87 0.51 1061 1.01
cor(Intercept,menstruationyes) 0.04 0.28 -0.57 0.62 4000 1.00
cor(fertile,menstruationyes) 0.38 0.33 -0.38 0.88 873 1.00
cor(menstruationpre,menstruationyes) -0.29 0.40 -0.90 0.60 960 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 2.40 0.17 2.06 2.75 1413 1
Intercept[2] 3.49 0.18 3.15 3.84 1421 1
Intercept[3] 4.42 0.18 4.08 4.78 1445 1
Intercept[4] 5.75 0.18 5.40 6.12 1527 1
Intercept[5] 6.70 0.19 6.32 7.08 1631 1
includedhorm_contra 0.10 0.16 -0.21 0.41 1099 1
menstruationpre -0.18 0.11 -0.40 0.04 4000 1
menstruationyes -0.08 0.11 -0.29 0.12 4000 1
fertile 0.09 0.23 -0.36 0.53 4000 1
fertile_mean -0.20 0.69 -1.59 1.15 2406 1
includedhorm_contra:menstruationpre 0.19 0.12 -0.05 0.42 4000 1
includedhorm_contra:menstruationyes -0.01 0.12 -0.23 0.21 4000 1
includedhorm_contra:fertile 0.00 0.25 -0.49 0.49 4000 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… wollte ich, dass meine Konkurrentinnen sich blamieren oder ignoriert werden.
31. I wanted my female rivals to fail.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 25617 | 0.86 |
2 | Stimme überwiegend nicht zu | 1753 | 0.06 |
3 | Stimme eher nicht zu | 960 | 0.03 |
4 | Stimme eher zu | 894 | 0.03 |
5 | Stimme überwiegend zu | 321 | 0.01 |
6 | Stimme voll zu | 332 | 0.01 |
Family: cumulative(logit)
Formula: NARQ_rivalry_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26546)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 24128.93; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.39 0.10 2.20 2.58 664 1.01
sd(fertile) 1.77 0.22 1.33 2.21 518 1.00
sd(menstruationpre) 0.28 0.17 0.02 0.62 272 1.01
sd(menstruationyes) 0.63 0.16 0.24 0.92 295 1.01
cor(Intercept,fertile) -0.17 0.12 -0.39 0.07 2604 1.00
cor(Intercept,menstruationpre) 0.04 0.33 -0.64 0.66 2725 1.00
cor(fertile,menstruationpre) -0.23 0.36 -0.86 0.51 561 1.00
cor(Intercept,menstruationyes) -0.09 0.18 -0.43 0.26 1327 1.00
cor(fertile,menstruationyes) 0.01 0.22 -0.47 0.39 395 1.00
cor(menstruationpre,menstruationyes) 0.27 0.40 -0.65 0.86 100 1.04
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 3.21 0.21 2.82 3.63 832 1.00
Intercept[2] 4.13 0.21 3.75 4.55 845 1.00
Intercept[3] 4.88 0.21 4.48 5.29 862 1.00
Intercept[4] 6.10 0.21 5.69 6.52 876 1.00
Intercept[5] 7.03 0.22 6.62 7.46 938 1.00
includedhorm_contra 0.27 0.19 -0.10 0.65 576 1.01
menstruationpre -0.24 0.14 -0.52 0.02 2313 1.00
menstruationyes -0.14 0.15 -0.44 0.15 1352 1.00
fertile -0.27 0.30 -0.87 0.32 2067 1.00
fertile_mean 0.43 0.78 -1.05 2.06 1430 1.00
includedhorm_contra:menstruationpre 0.11 0.14 -0.16 0.39 2686 1.00
includedhorm_contra:menstruationyes 0.04 0.15 -0.24 0.33 2575 1.00
includedhorm_contra:fertile -0.03 0.30 -0.61 0.55 2479 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… hatte ich das Gefühl, dass die meisten Frauen ziemliche Versagerinnen sind.
32. I had the feeling that most women are somehow losers.
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 26119 | 0.87 |
2 | Stimme überwiegend nicht zu | 1829 | 0.06 |
3 | Stimme eher nicht zu | 1012 | 0.03 |
4 | Stimme eher zu | 611 | 0.02 |
5 | Stimme überwiegend zu | 202 | 0.01 |
6 | Stimme voll zu | 103 | 0 |
Family: cumulative(logit)
Formula: NARQ_rivalry_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26545)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 19471.11; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.76 0.12 2.54 3.00 854 1.00
sd(fertile) 1.39 0.24 0.91 1.87 790 1.01
sd(menstruationpre) 0.48 0.14 0.19 0.75 529 1.00
sd(menstruationyes) 0.38 0.21 0.02 0.76 268 1.01
cor(Intercept,fertile) -0.07 0.16 -0.39 0.25 4000 1.00
cor(Intercept,menstruationpre) 0.00 0.23 -0.48 0.46 2556 1.00
cor(fertile,menstruationpre) -0.58 0.24 -0.94 -0.02 680 1.00
cor(Intercept,menstruationyes) -0.08 0.29 -0.66 0.52 4000 1.00
cor(fertile,menstruationyes) 0.14 0.34 -0.60 0.73 1020 1.00
cor(menstruationpre,menstruationyes) 0.11 0.38 -0.69 0.75 711 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 3.74 0.24 3.26 4.21 786 1
Intercept[2] 4.96 0.24 4.49 5.44 800 1
Intercept[3] 6.09 0.25 5.60 6.56 817 1
Intercept[4] 7.60 0.25 7.10 8.10 850 1
Intercept[5] 8.91 0.27 8.37 9.45 930 1
includedhorm_contra 0.27 0.22 -0.16 0.70 698 1
menstruationpre -0.09 0.17 -0.42 0.23 3101 1
menstruationyes 0.18 0.15 -0.13 0.47 2417 1
fertile -0.16 0.33 -0.81 0.48 2999 1
fertile_mean -0.20 0.86 -2.00 1.44 1895 1
includedhorm_contra:menstruationpre 0.09 0.16 -0.21 0.39 4000 1
includedhorm_contra:menstruationyes -0.17 0.14 -0.45 0.11 4000 1
includedhorm_contra:fertile -0.15 0.31 -0.76 0.47 4000 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Wie zufrieden waren Sie insgesamt seit Ihrem letzten Eintrag mit Ihrer Beziehung?
4. How satisfied were you with your relationship?
choice | value | frequency | percent |
---|---|---|---|
1 | Nicht zufrieden | 707 | 0.02 |
2 | Überwiegend nicht zufrieden | 880 | 0.03 |
3 | Eher nicht zufrieden | 2189 | 0.07 |
4 | Eher zufrieden | 6476 | 0.22 |
5 | Überwiegend zufrieden | 9008 | 0.3 |
6 | Sehr zufrieden | 10642 | 0.36 |
Family: cumulative(logit)
Formula: relationship_satisfaction_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26568)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 69728.82; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.79 0.05 1.68 1.90 651 1.00
sd(fertile) 1.94 0.12 1.71 2.18 843 1.00
sd(menstruationpre) 0.97 0.06 0.85 1.09 664 1.00
sd(menstruationyes) 0.97 0.06 0.85 1.08 870 1.01
cor(Intercept,fertile) -0.25 0.06 -0.36 -0.14 1573 1.00
cor(Intercept,menstruationpre) -0.11 0.07 -0.23 0.02 1503 1.00
cor(fertile,menstruationpre) 0.38 0.07 0.24 0.51 615 1.00
cor(Intercept,menstruationyes) -0.13 0.06 -0.25 0.00 1371 1.00
cor(fertile,menstruationyes) 0.33 0.08 0.18 0.47 591 1.01
cor(menstruationpre,menstruationyes) 0.40 0.07 0.25 0.53 568 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -4.97 0.15 -5.28 -4.69 720 1.00
Intercept[2] -3.89 0.14 -4.17 -3.61 685 1.00
Intercept[3] -2.60 0.14 -2.88 -2.32 664 1.00
Intercept[4] -1.09 0.14 -1.38 -0.82 658 1.00
Intercept[5] -0.77 0.14 -1.05 -0.50 657 1.00
Intercept[6] 1.08 0.14 0.80 1.35 654 1.00
includedhorm_contra 0.35 0.12 0.11 0.59 423 1.01
menstruationpre 0.08 0.08 -0.07 0.24 1493 1.00
menstruationyes 0.08 0.08 -0.07 0.23 1534 1.00
fertile 0.02 0.16 -0.29 0.33 1591 1.00
fertile_mean -0.51 0.60 -1.72 0.66 1292 1.00
includedhorm_contra:menstruationpre -0.09 0.10 -0.29 0.10 1493 1.00
includedhorm_contra:menstruationyes 0.02 0.10 -0.18 0.22 1532 1.00
includedhorm_contra:fertile -0.23 0.20 -0.63 0.16 1499 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
… war ich im Großen und Ganzen zufrieden mit mir selbst.
24. On the whole, I was satisfied with myself (based on Rosenberg, 1965).
choice | value | frequency | percent |
---|---|---|---|
1 | Stimme nicht zu | 1115 | 0.04 |
2 | Stimme überwiegend nicht zu | 1290 | 0.04 |
3 | Stimme eher nicht zu | 3612 | 0.12 |
4 | Stimme eher zu | 9965 | 0.33 |
5 | Stimme überwiegend zu | 9971 | 0.33 |
6 | Stimme voll zu | 3928 | 0.13 |
Family: cumulative(logit)
Formula: self_esteem_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26549)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 64765.31; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.92 0.05 1.82 2.03 640 1
sd(fertile) 1.80 0.11 1.58 2.02 967 1
sd(menstruationpre) 0.71 0.06 0.59 0.83 754 1
sd(menstruationyes) 0.68 0.06 0.56 0.80 862 1
cor(Intercept,fertile) -0.32 0.05 -0.42 -0.21 2181 1
cor(Intercept,menstruationpre) -0.31 0.06 -0.42 -0.18 2704 1
cor(fertile,menstruationpre) 0.40 0.08 0.23 0.56 750 1
cor(Intercept,menstruationyes) -0.21 0.07 -0.34 -0.07 2485 1
cor(fertile,menstruationyes) 0.29 0.09 0.10 0.46 800 1
cor(menstruationpre,menstruationyes) 0.59 0.09 0.40 0.76 513 1
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -4.80 0.15 -5.10 -4.51 671 1.00
Intercept[2] -3.63 0.14 -3.91 -3.35 636 1.00
Intercept[3] -2.15 0.14 -2.44 -1.87 630 1.00
Intercept[4] 0.11 0.14 -0.18 0.38 620 1.00
Intercept[5] 2.79 0.14 2.50 3.06 622 1.00
includedhorm_contra -0.08 0.13 -0.34 0.15 356 1.02
menstruationpre -0.13 0.07 -0.26 0.01 1854 1.00
menstruationyes -0.24 0.07 -0.37 -0.11 2082 1.00
fertile -0.12 0.15 -0.41 0.19 1836 1.00
fertile_mean -0.22 0.59 -1.38 0.90 1166 1.00
includedhorm_contra:menstruationpre 0.10 0.09 -0.08 0.28 1868 1.00
includedhorm_contra:menstruationyes 0.22 0.09 0.04 0.40 1857 1.00
includedhorm_contra:fertile 0.21 0.19 -0.18 0.59 1763 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Wie sehr hatten Sie seit Ihrem letzten Eintrag Lust, mit Ihrem Partner Geschlechtsverkehr zu haben?
6. How much were you in the mood to have sex with your partner?
choice | value | frequency | percent |
---|---|---|---|
1 | gar nicht | 3780 | 0.13 |
2 | kaum | 5133 | 0.17 |
3 | etwas | 9262 | 0.31 |
4 | viel | 7492 | 0.25 |
5 | sehr viel | 4235 | 0.14 |
Family: cumulative(logit)
Formula: sexual_intercourse_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26568)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 70553.56; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.58 0.05 1.49 1.68 848 1.00
sd(fertile) 1.80 0.11 1.59 2.02 862 1.01
sd(menstruationpre) 0.83 0.06 0.71 0.94 758 1.00
sd(menstruationyes) 0.95 0.06 0.85 1.06 744 1.00
cor(Intercept,fertile) -0.26 0.06 -0.37 -0.14 1784 1.00
cor(Intercept,menstruationpre) -0.13 0.07 -0.25 0.00 1702 1.00
cor(fertile,menstruationpre) 0.31 0.08 0.15 0.45 690 1.01
cor(Intercept,menstruationyes) -0.18 0.06 -0.29 -0.06 1422 1.00
cor(fertile,menstruationyes) 0.20 0.08 0.04 0.35 589 1.01
cor(menstruationpre,menstruationyes) 0.13 0.08 -0.04 0.28 489 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -2.34 0.13 -2.58 -2.09 835 1.00
Intercept[2] -0.83 0.13 -1.08 -0.58 834 1.00
Intercept[3] 0.99 0.13 0.74 1.24 844 1.00
Intercept[4] 2.82 0.13 2.58 3.08 859 1.00
includedhorm_contra 0.63 0.11 0.41 0.85 527 1.01
menstruationpre -0.15 0.07 -0.29 0.00 1773 1.00
menstruationyes -0.43 0.08 -0.58 -0.27 1626 1.00
fertile 0.57 0.15 0.26 0.87 1663 1.00
fertile_mean 0.27 0.55 -0.77 1.33 1091 1.00
includedhorm_contra:menstruationpre 0.01 0.10 -0.18 0.20 1810 1.00
includedhorm_contra:menstruationyes 0.16 0.10 -0.04 0.35 1661 1.00
includedhorm_contra:fertile -0.89 0.20 -1.28 -0.50 1661 1.00
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Hatten Sie seit Ihrem letzten Eintrag mit Ihrem Partner Geschlechtsverkehr?
7. Did you have sexual intercourse with your partner?
choice | value | frequency | percent |
---|---|---|---|
0 | NA | 23389 | 0.78 |
1 | ja (1x) | 4485 | 0.15 |
2 | ja (mehrfach) | 2028 | 0.07 |
Family: cumulative(logit)
Formula: sexual_intercourse_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26568)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 31568.87; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.06 0.05 0.96 1.16 693 1.01
sd(fertile) 1.06 0.21 0.61 1.46 133 1.03
sd(menstruationpre) 0.54 0.12 0.30 0.75 216 1.02
sd(menstruationyes) 1.02 0.11 0.80 1.24 595 1.00
cor(Intercept,fertile) -0.26 0.14 -0.50 0.04 575 1.01
cor(Intercept,menstruationpre) -0.19 0.14 -0.43 0.10 634 1.01
cor(fertile,menstruationpre) 0.77 0.15 0.42 0.97 317 1.02
cor(Intercept,menstruationyes) 0.07 0.10 -0.12 0.28 568 1.00
cor(fertile,menstruationyes) 0.05 0.21 -0.43 0.42 138 1.01
cor(menstruationpre,menstruationyes) 0.09 0.20 -0.32 0.44 178 1.03
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 1.70 0.11 1.48 1.92 1692 1
Intercept[2] 3.24 0.11 3.02 3.46 1743 1
includedhorm_contra 0.46 0.10 0.27 0.65 1163 1
menstruationpre -0.07 0.09 -0.25 0.12 1888 1
menstruationyes -1.03 0.13 -1.30 -0.78 1820 1
fertile 0.19 0.18 -0.18 0.54 1814 1
fertile_mean 0.48 0.48 -0.45 1.44 2082 1
includedhorm_contra:menstruationpre -0.09 0.11 -0.30 0.11 1908 1
includedhorm_contra:menstruationyes -0.40 0.15 -0.69 -0.12 2460 1
includedhorm_contra:fertile -0.56 0.21 -0.98 -0.14 1783 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Wer hat den Geschlechtsverkehr stärker initiiert?
8. Who initiated the sexual intercourse more strongly?
choice | value | frequency | percent |
---|---|---|---|
1 | ich | 2583 | 0.4 |
2 | mein Partner | 3929 | 0.6 |
Family: bernoulli(logit)
Formula: sexual_intercourse_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
Data: diary (Number of observations: 5730)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 7569.73; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 853)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 0.54 0.08 0.39 0.68 742 1.01
sd(fertile) 0.57 0.38 0.03 1.38 130 1.01
sd(menstruationpre) 0.43 0.22 0.04 0.84 275 1.01
sd(menstruationyes) 0.62 0.26 0.09 1.12 418 1.00
cor(Intercept,fertile) -0.13 0.39 -0.79 0.70 1189 1.00
cor(Intercept,menstruationpre) 0.16 0.33 -0.48 0.79 968 1.00
cor(fertile,menstruationpre) -0.04 0.42 -0.81 0.74 473 1.00
cor(Intercept,menstruationyes) -0.29 0.29 -0.78 0.39 622 1.01
cor(fertile,menstruationyes) 0.18 0.43 -0.71 0.87 252 1.01
cor(menstruationpre,menstruationyes) -0.39 0.37 -0.91 0.51 544 1.00
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept 0.27 0.13 0.02 0.51 1799 1
includedhorm_contra 0.17 0.11 -0.05 0.39 1418 1
menstruationpre 0.09 0.15 -0.20 0.40 1662 1
menstruationyes 0.08 0.17 -0.25 0.42 1800 1
fertile -0.38 0.26 -0.92 0.13 1692 1
fertile_mean 0.77 0.54 -0.24 1.83 3423 1
includedhorm_contra:menstruationpre -0.19 0.18 -0.56 0.17 1737 1
includedhorm_contra:menstruationyes -0.54 0.22 -0.97 -0.11 2120 1
includedhorm_contra:fertile 0.45 0.33 -0.20 1.11 1568 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Hatten Sie seit Ihrem letzten Eintrag anderen sexuellen Kontakt mit Ihrem Partner (Oralverkehr, Petting etc.)?
10. Did you have other forms of sexual contact with your
choice | value | frequency | percent |
---|---|---|---|
0 | NA | 24118 | 0.81 |
1 | ja (1x) | 3660 | 0.12 |
2 | ja (mehrfach) | 2123 | 0.07 |
Family: cumulative(logit)
Formula: sexual_intercourse_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 26567)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 29463.19; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 1043)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.17 0.06 1.06 1.28 1268 1.00
sd(fertile) 1.54 0.18 1.18 1.90 561 1.01
sd(menstruationpre) 0.67 0.11 0.44 0.87 534 1.01
sd(menstruationyes) 0.86 0.10 0.68 1.05 801 1.00
cor(Intercept,fertile) -0.17 0.10 -0.36 0.05 1426 1.00
cor(Intercept,menstruationpre) -0.09 0.12 -0.31 0.17 1116 1.00
cor(fertile,menstruationpre) 0.57 0.13 0.28 0.82 468 1.00
cor(Intercept,menstruationyes) -0.13 0.10 -0.32 0.07 914 1.00
cor(fertile,menstruationyes) 0.05 0.17 -0.30 0.36 326 1.01
cor(menstruationpre,menstruationyes) 0.33 0.16 -0.01 0.62 303 1.01
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] 1.86 0.12 1.62 2.10 1974 1
Intercept[2] 3.23 0.12 2.99 3.48 1989 1
includedhorm_contra 0.34 0.11 0.13 0.56 1412 1
menstruationpre -0.19 0.11 -0.41 0.02 1967 1
menstruationyes -0.36 0.11 -0.59 -0.13 1930 1
fertile 0.09 0.21 -0.33 0.49 2061 1
fertile_mean -0.10 0.51 -1.07 0.91 2564 1
includedhorm_contra:menstruationpre 0.02 0.12 -0.21 0.25 2478 1
includedhorm_contra:menstruationyes -0.07 0.13 -0.32 0.18 2451 1
includedhorm_contra:fertile -0.46 0.24 -0.92 0.02 2236 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
choice | value | frequency | percent |
---|---|---|---|
1 | NA | 46 | 0.01 |
2 | NA | 78 | 0.01 |
3 | NA | 250 | 0.04 |
4 | NA | 1361 | 0.21 |
5 | NA | 1887 | 0.29 |
6 | NA | 2889 | 0.44 |
Family: cumulative(logit)
Formula: sexual_intercourse_satisfaction ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person)
disc = 1
Data: diary (Number of observations: 5729)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
ICs: LOO = 12844.77; WAIC = Not computed
Group-Level Effects:
~person (Number of levels: 853)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 1.48 0.08 1.32 1.64 1776 1.00
sd(fertile) 0.99 0.45 0.10 1.80 176 1.03
sd(menstruationpre) 0.41 0.20 0.03 0.80 280 1.01
sd(menstruationyes) 0.97 0.22 0.51 1.37 565 1.02
cor(Intercept,fertile) -0.01 0.26 -0.47 0.56 1798 1.00
cor(Intercept,menstruationpre) 0.21 0.28 -0.36 0.72 2170 1.00
cor(fertile,menstruationpre) -0.03 0.41 -0.80 0.72 470 1.00
cor(Intercept,menstruationyes) -0.33 0.15 -0.60 -0.01 1350 1.00
cor(fertile,menstruationyes) 0.44 0.32 -0.34 0.90 290 1.01
cor(menstruationpre,menstruationyes) -0.45 0.35 -0.92 0.36 331 1.02
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1] -6.07 0.24 -6.56 -5.61 4000 1
Intercept[2] -4.89 0.20 -5.29 -4.50 4000 1
Intercept[3] -3.57 0.18 -3.92 -3.21 3324 1
Intercept[4] -1.29 0.17 -1.63 -0.96 3454 1
Intercept[5] 0.39 0.17 0.05 0.72 3492 1
includedhorm_contra 0.10 0.15 -0.19 0.39 2571 1
menstruationpre -0.04 0.14 -0.32 0.24 4000 1
menstruationyes -0.11 0.18 -0.45 0.24 4000 1
fertile 0.19 0.28 -0.37 0.75 4000 1
fertile_mean -0.21 0.71 -1.60 1.20 4000 1
includedhorm_contra:menstruationpre 0.11 0.18 -0.23 0.46 4000 1
includedhorm_contra:menstruationyes -0.04 0.23 -0.48 0.40 4000 1
includedhorm_contra:fertile -0.54 0.34 -1.21 0.13 4000 1
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
coefs = bind_rows(fertile_eff_by_item)
coefs = coefs %>%
mutate(contraception = ifelse(term == "fertile", "cycling", "hormonally\ncontracepting")) %>%
group_by(outcome) %>%
mutate(fertmean = na.omit(ifelse(term == "fertile", mean, NA_real_))) %>%
ungroup() %>%
arrange(desc(fertmean), outcome)
coefs %>%
mutate(outcome = factor(outcome, levels = coefs$outcome %>% unique() %>% rev())) %>%
ggplot(., aes(x = outcome, y = mean, ymin = X2.5., ymax = X97.5., color = contraception)) +
geom_linerange(aes(ymin = X20., ymax = X80.), position = position_dodge(width = 0.2), size = 1.5) +
geom_linerange(aes(ymin = X10., ymax = X90.), position = position_dodge(width = 0.2), size = 1) +
geom_linerange(position = position_dodge(width = 0.2), size = 0.5) +
geom_linerange(aes(ymin = X0.5., ymax = X99.5.), position = position_dodge(width = 0.2), size = 0.3) +
geom_point(position = position_dodge(width = 0.2), size = 3) +
scale_color_manual("", values = c("hormonally\ncontracepting" = "black","cycling" = "red"), guide = F) +
ylab("regression slope") +
geom_hline(yintercept = 0, linetype = 'dashed') +
coord_flip()
library(DT)
coefs %>%
mutate(
mean = form(mean),
`95% CI` = paste0("[", form(X2.5.,2) , ";", form(X97.5.,2) , "]"),
label = paste0(label, " [", outcome, "]")) %>%
select(label, contraception, mean, `95% CI`) %>%
datatable(rownames = FALSE, filter = "top", extensions = 'Buttons', options = list(
dom = 'Bfrtip',
buttons = c('copy', 'csv', 'excel', 'pdf', 'print'),
pagelength = 40
))