Item-level analyses

Cycling women (not on hormonal birth control)

Women on hormonal birth control

Load data

library(knitr)
opts_chunk$set(fig.width = 8, fig.height = 8, cache = F, warning = F, message = F)
library(xlsx); library(formr); library(data.table); library(stringr); library(ggplot2); library(plyr); library(car); library(psych); library(brms);
source("0_helpers.R")
load("full_data.rdata")
diary$extra_pair_intimacy_sex = diary$extra_pair_sex + diary$extra_pair_intimacy
twice = c("1" = 1, "2" = 2, "3" = 0)
diary$sexual_intercourse_2 = twice[diary$sexual_intercourse_2]
diary$sexual_intercourse_5 = twice[diary$sexual_intercourse_5]
diary$mate_retention_2 = twice[diary$mate_retention_2]
diary$relationship_satisfaction_1 = as.integer(diary$relationship_satisfaction_1)
diary$sexual_intercourse_satisfaction = as.integer(diary$sexual_intercourse_satisfaction)
items = xlsx::read.xlsx("item_tables/Taeglicher_Fragebogen_1-v3.xls", 1)
items_engl = xlsx::read.xlsx("item_tables/Daily_items_bearbeitetAM.xlsx", 1)
outcomes = list.files("by_item",full.names = T)
fertile_eff_by_item = list()
for (i in 1:length(outcomes)) {
    tryCatch({
    
    fit = readRDS(outcomes[i])
    outcome = all.vars(fit$formula$formula)[1]
    label = items %>% 
      filter(name == outcome) %>% 
      select(label, starts_with("choice"))
    label_eng = items_engl %>% 
      filter(Item.name == outcome) %>% 
      select(Item) %>% .[[1]]
    
    cat("\n\n\n##", outcome, "\n\n\n")
    cat(paste0("### Item text: \n\n__", label$label, "__\n\n\n"))
    cat(paste0("### Item translation: \n\n__", label_eng, "__\n\n\n"))
    cat("\n\n\n### Choices: {.accordion} \n\n\n")
    
    freqs = diary %>% 
      select(one_of(outcome)) %>% 
      table(exclude = NULL) %>% 
      as.data.frame() 

    names(freqs) = c("choice", "frequency")
    freqs$choice = as.character(freqs$choice)
    
    label %>% 
      select(-label) %>% 
      gather(choice, value)  %>% 
      mutate(choice = stringr::str_sub(choice, 7)) %>% 
      right_join(freqs, by = "choice") %>% 
      filter(!is.na(choice)) %>% 
      mutate(percent = round(frequency/sum(frequency),2)) %>%
      pander() %>% 
      cat()
    
    print(
      ggplot(diary, aes_string(x = paste0("factor(",outcome,")")))  +
      scale_x_discrete(outcome) + 
      geom_bar(na.rm = T)
    )
    
    coefs = fixef(fit, estimate = c("mean", "sd", "quantile"), probs = c(0.005, 0.025, 0.1, 0.2, 0.8, 0.9, 0.975, 0.995), old = T)
    coefs = coefs  %>% data.frame()  %>% tibble::rownames_to_column("term") %>% filter(term %in% c("fertile", "includedhorm_contra:fertile"))
    if (nrow(coefs) > 0) {
      coefs$outcome = outcome
      if (nrow(label) ) {
        coefs$label = label$label
      }
      fertile_eff_by_item[[i]] = coefs
    }
    
    cat("\n\n\n### Model {.tab-content} \n\n\n")
    cat("\n\n\n#### Model summary \n\n\n")
    
    print_summary(fit)

    tryCatch({
    cat("\n\n\n#### Coefficient plot\n\n\n")
    print(stanplot(fit, pars = "^b_[^I]") + geom_vline(xintercept = 0, linetype = 'dashed'))
    }, error = function(e) warning(e))
    
    tryCatch({
    cat("\n\n\n#### Marginal effect plots\n\n\n")
    marginal_effects_pass(fit)
    }, error = function(e) warning(e))
    
    tryCatch({
    cat("\n\n\n#### Diagnostics\n\n\n")
    
    print(pp_check(fit))
    }, error = function(e) warning(e))
    }, error = function(e){cat_message(e, "danger")})

}

attention_1

Item text:

… habe ich meinem Partner gezeigt, dass er mir wichtig ist.

Item translation:

41. I showed my partner that he is important to me.

Choices:

choice value frequency percent
1 Stimme nicht zu 2950 0.1
2 Stimme überwiegend nicht zu 1413 0.05
3 Stimme eher nicht zu 3069 0.1
4 Stimme eher zu 7681 0.26
5 Stimme überwiegend zu 7269 0.24
6 Stimme voll zu 7492 0.25

Model

Model summary

 Family: cumulative(logit) 
Formula: attention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 74193.79; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.69      0.05     1.59     1.79        563 1.01
sd(fertile)                              1.53      0.12     1.29     1.76        564 1.00
sd(menstruationpre)                      0.71      0.06     0.59     0.83        614 1.00
sd(menstruationyes)                      0.73      0.06     0.61     0.85        618 1.00
cor(Intercept,fertile)                  -0.24      0.07    -0.36    -0.10       1476 1.00
cor(Intercept,menstruationpre)          -0.12      0.08    -0.26     0.04       1357 1.00
cor(fertile,menstruationpre)             0.34      0.10     0.13     0.52        443 1.00
cor(Intercept,menstruationyes)          -0.17      0.07    -0.31    -0.03       1441 1.00
cor(fertile,menstruationyes)             0.39      0.09     0.19     0.56        550 1.00
cor(menstruationpre,menstruationyes)     0.54      0.09     0.35     0.70        518 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -2.93      0.13    -3.19    -2.67        624 1.01
Intercept[2]                           -2.35      0.13    -2.60    -2.10        622 1.01
Intercept[3]                           -1.46      0.13    -1.71    -1.21        621 1.01
Intercept[4]                            0.15      0.13    -0.10     0.40        620 1.01
Intercept[5]                            1.71      0.13     1.46     1.96        622 1.01
includedhorm_contra                     0.28      0.12     0.04     0.51        420 1.01
menstruationpre                         0.05      0.07    -0.09     0.19       1224 1.00
menstruationyes                         0.05      0.07    -0.08     0.19       1190 1.00
fertile                                 0.17      0.15    -0.12     0.46       1293 1.00
fertile_mean                           -0.16      0.55    -1.24     0.90       1076 1.00
includedhorm_contra:menstruationpre    -0.10      0.09    -0.28     0.08       1195 1.00
includedhorm_contra:menstruationyes    -0.02      0.09    -0.20     0.16       1164 1.00
includedhorm_contra:fertile            -0.40      0.19    -0.78    -0.03       1184 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

attention_2

Item text:

… habe ich meinem Partner gezeigt, dass ich mich von ihm sexuell angezogen fühle.

Item translation:

42. I showed my partner that I was sexually attracted to him.

Choices:

choice value frequency percent
1 Stimme nicht zu 7785 0.26
2 Stimme überwiegend nicht zu 3194 0.11
3 Stimme eher nicht zu 4982 0.17
4 Stimme eher zu 5502 0.18
5 Stimme überwiegend zu 4166 0.14
6 Stimme voll zu 4245 0.14

Model

Model summary

 Family: cumulative(logit) 
Formula: attention_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 83451.19; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.47      0.05     1.38     1.56       1188 1.00
sd(fertile)                              1.66      0.11     1.44     1.89        774 1.00
sd(menstruationpre)                      0.63      0.06     0.51     0.76        645 1.01
sd(menstruationyes)                      0.65      0.06     0.54     0.77        731 1.01
cor(Intercept,fertile)                  -0.27      0.06    -0.40    -0.14       1911 1.00
cor(Intercept,menstruationpre)          -0.21      0.08    -0.37    -0.05       2237 1.00
cor(fertile,menstruationpre)             0.37      0.10     0.17     0.55        718 1.01
cor(Intercept,menstruationyes)          -0.22      0.08    -0.37    -0.07       2266 1.00
cor(fertile,menstruationyes)             0.25      0.10     0.06     0.43        559 1.01
cor(menstruationpre,menstruationyes)     0.31      0.12     0.06     0.52        480 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.30      0.12    -1.53    -1.06        773 1.00
Intercept[2]                           -0.62      0.12    -0.85    -0.39        769 1.00
Intercept[3]                            0.29      0.12     0.07     0.53        773 1.00
Intercept[4]                            1.33      0.12     1.11     1.58        780 1.00
Intercept[5]                            2.41      0.12     2.18     2.66        788 1.00
includedhorm_contra                     0.25      0.11     0.03     0.46        604 1.01
menstruationpre                        -0.07      0.07    -0.21     0.06       2105 1.00
menstruationyes                        -0.27      0.07    -0.40    -0.14       1932 1.00
fertile                                 0.32      0.15     0.03     0.60       1667 1.00
fertile_mean                           -0.16      0.50    -1.18     0.84       1211 1.00
includedhorm_contra:menstruationpre     0.01      0.09    -0.15     0.17       2172 1.00
includedhorm_contra:menstruationyes     0.05      0.09    -0.12     0.22       2014 1.00
includedhorm_contra:fertile            -0.62      0.19    -0.98    -0.27       1486 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_1

Item text:

Seriös

Item translation:

16. respectable

Choices:

choice value frequency percent
1 Stimme nicht zu 6472 0.22
2 Stimme überwiegend nicht zu 3381 0.11
3 Stimme eher nicht zu 5966 0.2
4 Stimme eher zu 7768 0.26
5 Stimme überwiegend zu 4545 0.15
6 Stimme voll zu 1764 0.06

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26562) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 77486.23; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.67      0.05     1.57     1.77        362 1.00
sd(fertile)                              1.10      0.12     0.86     1.35        278 1.01
sd(menstruationpre)                      0.20      0.13     0.01     0.46         86 1.04
sd(menstruationyes)                      0.51      0.07     0.37     0.63        341 1.00
cor(Intercept,fertile)                  -0.22      0.08    -0.38    -0.04        710 1.00
cor(Intercept,menstruationpre)          -0.13      0.29    -0.72     0.58       1408 1.00
cor(fertile,menstruationpre)             0.10      0.36    -0.70     0.74        370 1.01
cor(Intercept,menstruationyes)          -0.01      0.10    -0.19     0.19       1589 1.00
cor(fertile,menstruationyes)             0.20      0.16    -0.12     0.48        309 1.01
cor(menstruationpre,menstruationyes)     0.21      0.36    -0.68     0.81         62 1.06

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.87      0.13    -2.14    -1.62        516 1.01
Intercept[2]                           -1.04      0.13    -1.31    -0.79        513 1.01
Intercept[3]                            0.13      0.13    -0.13     0.38        515 1.01
Intercept[4]                            1.78      0.13     1.52     2.03        515 1.01
Intercept[5]                            3.66      0.13     3.39     3.92        533 1.01
includedhorm_contra                    -0.02      0.12    -0.26     0.23        328 1.01
menstruationpre                        -0.16      0.06    -0.27    -0.05       1764 1.00
menstruationyes                        -0.14      0.06    -0.27    -0.02       1604 1.00
fertile                                -0.13      0.13    -0.38     0.14       1381 1.00
fertile_mean                           -0.56      0.56    -1.65     0.48        946 1.00
includedhorm_contra:menstruationpre     0.08      0.07    -0.07     0.23       1167 1.00
includedhorm_contra:menstruationyes     0.11      0.08    -0.05     0.27        809 1.00
includedhorm_contra:fertile             0.07      0.17    -0.26     0.41       1140 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_2

Item text:

Praktisch

Item translation:

17. practical

Choices:

choice value frequency percent
1 Stimme nicht zu 628 0.02
2 Stimme überwiegend nicht zu 1046 0.03
3 Stimme eher nicht zu 3185 0.11
4 Stimme eher zu 9221 0.31
5 Stimme überwiegend zu 8696 0.29
6 Stimme voll zu 7116 0.24

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26558) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 72212.25; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.23      0.04     1.16     1.31       1105 1.00
sd(fertile)                              1.14      0.14     0.85     1.40        390 1.01
sd(menstruationpre)                      0.45      0.08     0.27     0.60        295 1.01
sd(menstruationyes)                      0.28      0.11     0.03     0.46        217 1.01
cor(Intercept,fertile)                  -0.28      0.08    -0.43    -0.12       4000 1.00
cor(Intercept,menstruationpre)          -0.17      0.10    -0.35     0.05       4000 1.00
cor(fertile,menstruationpre)             0.17      0.21    -0.30     0.48        236 1.01
cor(Intercept,menstruationyes)           0.02      0.21    -0.32     0.55        955 1.00
cor(fertile,menstruationyes)             0.36      0.28    -0.40     0.79        547 1.01
cor(menstruationpre,menstruationyes)     0.51      0.30    -0.30     0.90        391 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -4.61      0.12    -4.85    -4.39       1749    1
Intercept[2]                           -3.46      0.11    -3.67    -3.24       1589    1
Intercept[3]                           -2.09      0.11    -2.30    -1.88       1570    1
Intercept[4]                           -0.22      0.11    -0.43    -0.01       1577    1
Intercept[5]                            1.41      0.11     1.20     1.62       1583    1
includedhorm_contra                     0.07      0.10    -0.12     0.26       1100    1
menstruationpre                         0.13      0.06     0.01     0.25       4000    1
menstruationyes                         0.14      0.06     0.03     0.25       4000    1
fertile                                 0.16      0.13    -0.09     0.41       4000    1
fertile_mean                           -0.48      0.47    -1.39     0.44       2384    1
includedhorm_contra:menstruationpre    -0.19      0.08    -0.35    -0.03       4000    1
includedhorm_contra:menstruationyes    -0.19      0.07    -0.33    -0.04       4000    1
includedhorm_contra:fertile            -0.10      0.16    -0.42     0.21       3177    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_3

Item text:

Sportlich

Item translation:

18. athletic

Choices:

choice value frequency percent
1 Stimme nicht zu 2782 0.09
2 Stimme überwiegend nicht zu 2963 0.1
3 Stimme eher nicht zu 5880 0.2
4 Stimme eher zu 8896 0.3
5 Stimme überwiegend zu 6298 0.21
6 Stimme voll zu 3068 0.1

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26554) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 79384.6; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.49      0.04     1.41     1.58        885 1.00
sd(fertile)                              0.97      0.15     0.67     1.24        379 1.01
sd(menstruationpre)                      0.46      0.07     0.32     0.58        501 1.00
sd(menstruationyes)                      0.54      0.06     0.40     0.65        433 1.00
cor(Intercept,fertile)                  -0.22      0.09    -0.39    -0.03       4000 1.00
cor(Intercept,menstruationpre)          -0.36      0.09    -0.52    -0.18       4000 1.00
cor(fertile,menstruationpre)             0.24      0.19    -0.16     0.55        326 1.00
cor(Intercept,menstruationyes)          -0.20      0.08    -0.36    -0.04       2353 1.00
cor(fertile,menstruationyes)             0.31      0.16    -0.04     0.59        293 1.00
cor(menstruationpre,menstruationyes)     0.90      0.07     0.73     0.98        504 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -2.98      0.12    -3.21    -2.74       1008    1
Intercept[2]                           -1.86      0.12    -2.10    -1.63        997    1
Intercept[3]                           -0.55      0.12    -0.78    -0.31        994    1
Intercept[4]                            1.09      0.12     0.86     1.33        993    1
Intercept[5]                            2.83      0.12     2.59     3.07        990    1
includedhorm_contra                     0.18      0.11    -0.03     0.39        548    1
menstruationpre                         0.10      0.06    -0.02     0.22       2095    1
menstruationyes                         0.02      0.06    -0.10     0.14       2580    1
fertile                                 0.06      0.13    -0.19     0.30       2697    1
fertile_mean                           -0.40      0.52    -1.44     0.63        913    1
includedhorm_contra:menstruationpre    -0.07      0.08    -0.22     0.08       2266    1
includedhorm_contra:menstruationyes    -0.06      0.08    -0.22     0.10       2890    1
includedhorm_contra:fertile            -0.04      0.16    -0.34     0.27       2589    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_4

Item text:

Sexy

Item translation:

19. sexy

Choices:

choice value frequency percent
1 Stimme nicht zu 5639 0.19
2 Stimme überwiegend nicht zu 4092 0.14
3 Stimme eher nicht zu 7002 0.23
4 Stimme eher zu 8183 0.27
5 Stimme überwiegend zu 3918 0.13
6 Stimme voll zu 1050 0.04

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_4 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26551) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 77225.54; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.48      0.04     1.40     1.57       1019 1.00
sd(fertile)                              1.32      0.13     1.07     1.56        469 1.01
sd(menstruationpre)                      0.52      0.07     0.37     0.65        444 1.00
sd(menstruationyes)                      0.60      0.06     0.47     0.72        755 1.00
cor(Intercept,fertile)                  -0.12      0.08    -0.26     0.04       1413 1.00
cor(Intercept,menstruationpre)          -0.04      0.09    -0.21     0.15       1148 1.00
cor(fertile,menstruationpre)             0.48      0.13     0.19     0.70        490 1.00
cor(Intercept,menstruationyes)          -0.09      0.08    -0.25     0.07       1408 1.00
cor(fertile,menstruationyes)             0.37      0.12     0.10     0.58        457 1.01
cor(menstruationpre,menstruationyes)     0.63      0.12     0.38     0.84        382 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.79      0.12    -2.05    -1.55        675 1.01
Intercept[2]                           -0.77      0.12    -1.02    -0.53        677 1.01
Intercept[3]                            0.58      0.12     0.33     0.82        675 1.01
Intercept[4]                            2.37      0.13     2.11     2.61        683 1.01
Intercept[5]                            4.38      0.13     4.12     4.63        725 1.01
includedhorm_contra                     0.24      0.11     0.02     0.44        551 1.01
menstruationpre                        -0.19      0.07    -0.32    -0.06       2042 1.00
menstruationyes                        -0.25      0.06    -0.38    -0.13       2146 1.00
fertile                                -0.24      0.14    -0.50     0.03       1845 1.00
fertile_mean                            0.71      0.54    -0.33     1.77       1101 1.00
includedhorm_contra:menstruationpre     0.09      0.08    -0.07     0.26       1985 1.00
includedhorm_contra:menstruationyes     0.14      0.08    -0.03     0.30       2149 1.00
includedhorm_contra:fertile            -0.03      0.17    -0.38     0.30       1766 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_5

Item text:

Glamourös

Item translation:

20. glamorous

Choices:

choice value frequency percent
1 Stimme nicht zu 14708 0.49
2 Stimme überwiegend nicht zu 5023 0.17
3 Stimme eher nicht zu 5030 0.17
4 Stimme eher zu 3347 0.11
5 Stimme überwiegend zu 1400 0.05
6 Stimme voll zu 377 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26552) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 61988.09; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.74      0.06     1.64     1.86        511 1.00
sd(fertile)                              1.16      0.14     0.87     1.44        354 1.01
sd(menstruationpre)                      0.25      0.10     0.04     0.44        215 1.01
sd(menstruationyes)                      0.39      0.11     0.11     0.56        183 1.02
cor(Intercept,fertile)                  -0.02      0.10    -0.22     0.18       1448 1.00
cor(Intercept,menstruationpre)           0.34      0.23    -0.11     0.79        992 1.00
cor(fertile,menstruationpre)            -0.08      0.32    -0.73     0.51        360 1.01
cor(Intercept,menstruationyes)           0.12      0.17    -0.18     0.52        469 1.01
cor(fertile,menstruationyes)             0.21      0.22    -0.30     0.59        277 1.01
cor(menstruationpre,menstruationyes)     0.30      0.35    -0.52     0.85        136 1.02

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            0.40      0.14     0.12     0.68        500    1
Intercept[2]                            1.48      0.14     1.19     1.76        504    1
Intercept[3]                            2.72      0.14     2.44     3.01        515    1
Intercept[4]                            4.18      0.15     3.89     4.47        528    1
Intercept[5]                            5.98      0.16     5.67     6.28        681    1
includedhorm_contra                     0.50      0.13     0.26     0.76        404    1
menstruationpre                        -0.08      0.07    -0.22     0.07       1760    1
menstruationyes                        -0.15      0.07    -0.29    -0.01       2355    1
fertile                                 0.10      0.15    -0.20     0.40       1560    1
fertile_mean                            0.38      0.60    -0.75     1.59       1064    1
includedhorm_contra:menstruationpre    -0.06      0.09    -0.23     0.11       2070    1
includedhorm_contra:menstruationyes     0.02      0.09    -0.15     0.19       2370    1
includedhorm_contra:fertile            -0.30      0.18    -0.66     0.05       1775    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_6

Item text:

Figurbetont

Item translation:

21. figure – hugging

Choices:

choice value frequency percent
1 Stimme nicht zu 3567 0.12
2 Stimme überwiegend nicht zu 2175 0.07
3 Stimme eher nicht zu 4804 0.16
4 Stimme eher zu 10377 0.35
5 Stimme überwiegend zu 6510 0.22
6 Stimme voll zu 2450 0.08

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_6 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26550) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 75356.62; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.56      0.05     1.47     1.67        840 1.00
sd(fertile)                              1.22      0.12     0.97     1.46        479 1.01
sd(menstruationpre)                      0.50      0.07     0.35     0.63        456 1.01
sd(menstruationyes)                      0.50      0.07     0.37     0.63        615 1.00
cor(Intercept,fertile)                  -0.08      0.08    -0.24     0.09       1502 1.00
cor(Intercept,menstruationpre)          -0.14      0.09    -0.31     0.06       1903 1.00
cor(fertile,menstruationpre)             0.43      0.14     0.13     0.66        474 1.00
cor(Intercept,menstruationyes)          -0.23      0.09    -0.39    -0.06       2583 1.00
cor(fertile,menstruationyes)             0.27      0.15    -0.05     0.53        316 1.01
cor(menstruationpre,menstruationyes)     0.71      0.13     0.43     0.95        269 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -2.54      0.13    -2.78    -2.28        536 1.02
Intercept[2]                           -1.78      0.13    -2.03    -1.52        633 1.02
Intercept[3]                           -0.63      0.13    -0.87    -0.37        630 1.02
Intercept[4]                            1.38      0.13     1.13     1.64        628 1.02
Intercept[5]                            3.43      0.13     3.19     3.70        643 1.01
includedhorm_contra                     0.16      0.11    -0.06     0.38        469 1.01
menstruationpre                        -0.12      0.06    -0.24     0.01       1972 1.00
menstruationyes                        -0.22      0.06    -0.34    -0.10       2008 1.00
fertile                                -0.08      0.14    -0.35     0.20       2118 1.00
fertile_mean                            0.91      0.57    -0.17     2.09        946 1.00
includedhorm_contra:menstruationpre    -0.02      0.08    -0.18     0.14       1840 1.00
includedhorm_contra:menstruationyes     0.15      0.08     0.00     0.31       1724 1.00
includedhorm_contra:fertile            -0.07      0.17    -0.39     0.27       1874 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_7

Item text:

Verführerisch

Item translation:

22. seductive

Choices:

choice value frequency percent
1 Stimme nicht zu 10425 0.35
2 Stimme überwiegend nicht zu 4983 0.17
3 Stimme eher nicht zu 7017 0.23
4 Stimme eher zu 4902 0.16
5 Stimme überwiegend zu 2004 0.07
6 Stimme voll zu 550 0.02

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_7 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26548) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 70438.85; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.68      0.05     1.58     1.78        569 1.00
sd(fertile)                              1.34      0.13     1.08     1.58        374 1.01
sd(menstruationpre)                      0.25      0.13     0.02     0.47         71 1.05
sd(menstruationyes)                      0.39      0.12     0.10     0.58         89 1.05
cor(Intercept,fertile)                  -0.18      0.08    -0.33    -0.02       1768 1.00
cor(Intercept,menstruationpre)           0.19      0.25    -0.29     0.73        398 1.00
cor(fertile,menstruationpre)            -0.10      0.31    -0.78     0.45        207 1.02
cor(Intercept,menstruationyes)          -0.05      0.15    -0.32     0.27       1139 1.00
cor(fertile,menstruationyes)             0.06      0.22    -0.48     0.40        225 1.04
cor(menstruationpre,menstruationyes)     0.29      0.42    -0.76     0.87         51 1.11

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -0.68      0.13    -0.94    -0.41        424 1.01
Intercept[2]                            0.36      0.13     0.10     0.64        429 1.01
Intercept[3]                            1.81      0.13     1.55     2.08        440 1.01
Intercept[4]                            3.38      0.14     3.13     3.66        453 1.01
Intercept[5]                            5.21      0.14     4.94     5.50        484 1.01
includedhorm_contra                     0.21      0.11    -0.01     0.44        334 1.02
menstruationpre                        -0.19      0.06    -0.31    -0.07       1762 1.00
menstruationyes                        -0.27      0.06    -0.40    -0.15       1953 1.00
fertile                                 0.06      0.14    -0.20     0.35       1677 1.00
fertile_mean                            0.47      0.57    -0.65     1.62        810 1.01
includedhorm_contra:menstruationpre     0.10      0.08    -0.06     0.25       1853 1.00
includedhorm_contra:menstruationyes     0.17      0.08     0.02     0.33       2039 1.00
includedhorm_contra:fertile            -0.30      0.18    -0.64     0.05       1762 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

choice_of_clothing_8

Item text:

Auffällig

Item translation:

23. noticeable

Choices:

choice value frequency percent
1 Stimme nicht zu 8689 0.29
2 Stimme überwiegend nicht zu 4507 0.15
3 Stimme eher nicht zu 7087 0.24
4 Stimme eher zu 5938 0.2
5 Stimme überwiegend zu 2720 0.09
6 Stimme voll zu 941 0.03

Model

Model summary

 Family: cumulative(logit) 
Formula: choice_of_clothing_8 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26549) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 73271.26; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.68      0.05     1.58     1.77        805 1.00
sd(fertile)                              1.04      0.14     0.76     1.31        296 1.02
sd(menstruationpre)                      0.41      0.10     0.19     0.58         77 1.03
sd(menstruationyes)                      0.49      0.07     0.34     0.63        319 1.02
cor(Intercept,fertile)                   0.01      0.10    -0.18     0.22        894 1.00
cor(Intercept,menstruationpre)           0.21      0.15    -0.05     0.55        215 1.01
cor(fertile,menstruationpre)             0.05      0.26    -0.55     0.46        134 1.02
cor(Intercept,menstruationyes)          -0.07      0.10    -0.26     0.13       1768 1.00
cor(fertile,menstruationyes)             0.02      0.20    -0.40     0.37        234 1.02
cor(menstruationpre,menstruationyes)     0.07      0.23    -0.45     0.46        120 1.03

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.09      0.13    -1.35    -0.82        556 1.00
Intercept[2]                           -0.06      0.13    -0.32     0.21        565 1.00
Intercept[3]                            1.35      0.13     1.09     1.63        561 1.01
Intercept[4]                            2.96      0.14     2.69     3.23        574 1.01
Intercept[5]                            4.72      0.14     4.45     4.99        627 1.01
includedhorm_contra                     0.14      0.12    -0.08     0.38        339 1.01
menstruationpre                        -0.14      0.07    -0.27    -0.01       2265 1.00
menstruationyes                        -0.20      0.07    -0.33    -0.07       2303 1.00
fertile                                -0.14      0.14    -0.40     0.13       2201 1.00
fertile_mean                            0.65      0.58    -0.43     1.83        846 1.00
includedhorm_contra:menstruationpre     0.04      0.08    -0.12     0.22       2427 1.00
includedhorm_contra:menstruationyes     0.12      0.08    -0.04     0.28       2668 1.00
includedhorm_contra:fertile            -0.15      0.17    -0.47     0.18       2133 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

communication_partner_1

Item text:

Wie oft haben Sie seit Ihrem letzten Eintrag mit Ihrem Partner kommuniziert?

Item translation:

1. How often did you communicate with your partner?

Choices:

choice value frequency percent
1 Gar nicht 1027 0.03
2 Wenig 11628 0.39
3 Viel 17247 0.58

Model

Model summary

 Family: cumulative(logit) 
Formula: communication_partner_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26568) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 37037.95; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.32      0.05     1.22     1.42       1344 1.00
sd(fertile)                              1.81      0.13     1.54     2.08        556 1.01
sd(menstruationpre)                      0.82      0.07     0.69     0.96        852 1.00
sd(menstruationyes)                      0.75      0.07     0.60     0.89        989 1.00
cor(Intercept,fertile)                  -0.37      0.07    -0.49    -0.24       1702 1.00
cor(Intercept,menstruationpre)          -0.34      0.08    -0.48    -0.19       1822 1.00
cor(fertile,menstruationpre)             0.45      0.09     0.27     0.61        574 1.01
cor(Intercept,menstruationyes)          -0.17      0.09    -0.33     0.01       1787 1.00
cor(fertile,menstruationyes)             0.56      0.09     0.38     0.73        802 1.00
cor(menstruationpre,menstruationyes)     0.51      0.10     0.30     0.69        754 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -4.07      0.12    -4.32    -3.83       1364    1
Intercept[2]                           -0.40      0.12    -0.65    -0.17       1283    1
includedhorm_contra                     0.18      0.10    -0.02     0.38       1061    1
menstruationpre                         0.08      0.08    -0.09     0.24       2087    1
menstruationyes                         0.07      0.08    -0.08     0.22       2136    1
fertile                                -0.07      0.17    -0.41     0.26       1857    1
fertile_mean                           -0.37      0.50    -1.38     0.60       2277    1
includedhorm_contra:menstruationpre    -0.21      0.11    -0.43    -0.01       1869    1
includedhorm_contra:menstruationyes    -0.14      0.10    -0.34     0.05       2106    1
includedhorm_contra:fertile            -0.23      0.21    -0.62     0.17       1746    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

communication_partner_2

Item text:

Auf welche Art haben Sie hauptsächlich mit Ihrem Partner kommuniziert?

Item translation:

2. How did you communicate mainly with your partner?

Choices:

choice value frequency percent
1 Direkter persönlicher Kontakt 18537 0.64
2 Telefon 3226 0.11
3 SMS 1126 0.04
4 mobile Nachrichtenapp (z.B. Whatsapp) 4368 0.15
5 Webcam (z.B. Skype) 681 0.02
6 Email 216 0.01
7 Chat (z.B. Facebook) 703 0.02

Model

Model summary

 Family: categorical(logit) 
Formula: communication_partner_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
   Data: diary (Number of observations: 25656) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 38999.67; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1039) 
                                           Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(X2_Intercept)                               2.06      0.10     1.87     2.28       1814 1.00
sd(X2_fertile)                                 1.95      0.25     1.45     2.45        552 1.00
sd(X2_menstruationpre)                         0.69      0.17     0.27     0.97        421 1.00
sd(X2_menstruationyes)                         0.52      0.22     0.05     0.92        268 1.02
sd(X3_Intercept)                               2.83      0.19     2.48     3.22       1374 1.00
sd(X3_fertile)                                 2.50      0.44     1.66     3.39        765 1.00
sd(X3_menstruationpre)                         0.78      0.31     0.12     1.37        409 1.01
sd(X3_menstruationyes)                         0.38      0.26     0.02     0.95        564 1.01
sd(X4_Intercept)                               2.46      0.12     2.23     2.69       1707 1.00
sd(X4_fertile)                                 1.86      0.25     1.36     2.34        739 1.01
sd(X4_menstruationpre)                         0.75      0.13     0.48     0.99        647 1.00
sd(X4_menstruationyes)                         0.84      0.14     0.56     1.12       1042 1.00
sd(X5_Intercept)                               4.86      0.41     4.11     5.74       1167 1.00
sd(X5_fertile)                                 1.00      0.66     0.04     2.43        722 1.00
sd(X5_menstruationpre)                         1.08      0.31     0.46     1.69        944 1.00
sd(X5_menstruationyes)                         0.93      0.37     0.16     1.67        987 1.00
sd(X6_Intercept)                               4.91      0.68     3.75     6.41       1039 1.00
sd(X6_fertile)                                 1.04      0.82     0.04     3.06       1371 1.00
sd(X6_menstruationpre)                         1.32      0.70     0.11     2.84        904 1.00
sd(X6_menstruationyes)                         0.81      0.57     0.05     2.16       1139 1.00
sd(X7_Intercept)                               3.97      0.36     3.33     4.75       1276 1.00
sd(X7_fertile)                                 3.00      0.56     1.93     4.14       1022 1.00
sd(X7_menstruationpre)                         0.56      0.36     0.03     1.35        648 1.00
sd(X7_menstruationyes)                         1.27      0.58     0.20     2.54       1426 1.00
cor(X2_Intercept,X2_fertile)                  -0.23      0.13    -0.47     0.04       2865 1.00
cor(X2_Intercept,X2_menstruationpre)          -0.18      0.18    -0.52     0.21       3209 1.00
cor(X2_fertile,X2_menstruationpre)             0.21      0.22    -0.33     0.57        509 1.00
cor(X2_Intercept,X2_menstruationyes)           0.05      0.25    -0.44     0.56       2384 1.00
cor(X2_fertile,X2_menstruationyes)             0.34      0.27    -0.31     0.79        858 1.00
cor(X2_menstruationpre,X2_menstruationyes)     0.23      0.33    -0.59     0.75        555 1.00
cor(X3_Intercept,X3_fertile)                  -0.01      0.19    -0.38     0.36       4000 1.00
cor(X3_Intercept,X3_menstruationpre)           0.16      0.28    -0.42     0.69       4000 1.00
cor(X3_fertile,X3_menstruationpre)             0.16      0.30    -0.54     0.68        939 1.00
cor(X3_Intercept,X3_menstruationyes)           0.05      0.39    -0.72     0.76       4000 1.00
cor(X3_fertile,X3_menstruationyes)             0.18      0.40    -0.68     0.82       1589 1.00
cor(X3_menstruationpre,X3_menstruationyes)     0.27      0.42    -0.67     0.90       1086 1.00
cor(X4_Intercept,X4_fertile)                  -0.01      0.15    -0.31     0.29       4000 1.00
cor(X4_Intercept,X4_menstruationpre)          -0.04      0.18    -0.39     0.32       4000 1.00
cor(X4_fertile,X4_menstruationpre)             0.37      0.17    -0.02     0.66        703 1.00
cor(X4_Intercept,X4_menstruationyes)           0.29      0.16    -0.04     0.59       2143 1.00
cor(X4_fertile,X4_menstruationyes)            -0.02      0.19    -0.42     0.31        592 1.01
cor(X4_menstruationpre,X4_menstruationyes)     0.43      0.17     0.07     0.75        764 1.00
cor(X5_Intercept,X5_fertile)                   0.16      0.42    -0.71     0.86       4000 1.00
cor(X5_Intercept,X5_menstruationpre)          -0.21      0.31    -0.76     0.41       4000 1.00
cor(X5_fertile,X5_menstruationpre)            -0.09      0.40    -0.81     0.69        488 1.00
cor(X5_Intercept,X5_menstruationyes)           0.21      0.33    -0.49     0.76       4000 1.00
cor(X5_fertile,X5_menstruationyes)             0.06      0.42    -0.76     0.80        600 1.01
cor(X5_menstruationpre,X5_menstruationyes)     0.35      0.32    -0.38     0.85       1679 1.00
cor(X6_Intercept,X6_fertile)                   0.07      0.44    -0.78     0.82       4000 1.00
cor(X6_Intercept,X6_menstruationpre)          -0.24      0.37    -0.84     0.53       4000 1.00
cor(X6_fertile,X6_menstruationpre)             0.07      0.44    -0.76     0.84       1155 1.00
cor(X6_Intercept,X6_menstruationyes)           0.05      0.42    -0.77     0.78       4000 1.00
cor(X6_fertile,X6_menstruationyes)             0.10      0.45    -0.78     0.85       2282 1.00
cor(X6_menstruationpre,X6_menstruationyes)     0.05      0.43    -0.76     0.80       3070 1.00
cor(X7_Intercept,X7_fertile)                  -0.04      0.24    -0.51     0.43       2886 1.00
cor(X7_Intercept,X7_menstruationpre)           0.25      0.41    -0.65     0.87       4000 1.00
cor(X7_fertile,X7_menstruationpre)            -0.20      0.37    -0.83     0.57       2658 1.00
cor(X7_Intercept,X7_menstruationyes)           0.68      0.25     0.00     0.95       1853 1.00
cor(X7_fertile,X7_menstruationyes)             0.17      0.27    -0.40     0.65       1972 1.00
cor(X7_menstruationpre,X7_menstruationyes)     0.15      0.41    -0.73     0.81       1704 1.00

Population-Level Effects: 
                                       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
X2_Intercept                              -2.84      0.24    -3.31    -2.38       1897    1
X3_Intercept                              -5.41      0.43    -6.25    -4.60       2297    1
X4_Intercept                              -3.31      0.28    -3.88    -2.77       1492    1
X5_Intercept                              -8.39      0.90   -10.26    -6.74       1317    1
X6_Intercept                             -10.27      1.43   -13.42    -7.72       1784    1
X7_Intercept                              -8.16      0.77    -9.74    -6.73       1873    1
X2_includedhorm_contra                     0.23      0.18    -0.14     0.57       1527    1
X2_menstruationpre                         0.10      0.17    -0.23     0.43       3175    1
X2_menstruationyes                         0.04      0.17    -0.29     0.34       1743    1
X2_fertile                                 0.20      0.36    -0.50     0.92       3066    1
X2_fertile_mean                           -0.92      1.08    -3.03     1.20       1827    1
X2_includedhorm_contra:menstruationpre     0.14      0.16    -0.19     0.47       4000    1
X2_includedhorm_contra:menstruationyes     0.05      0.16    -0.26     0.36       4000    1
X2_includedhorm_contra:fertile             0.35      0.35    -0.34     1.03       4000    1
X3_includedhorm_contra                     0.01      0.30    -0.59     0.61       1550    1
X3_menstruationpre                        -0.41      0.41    -1.27     0.30       2653    1
X3_menstruationyes                        -0.09      0.30    -0.73     0.48       4000    1
X3_fertile                                -0.74      0.86    -2.48     0.91       2808    1
X3_fertile_mean                           -0.39      1.82    -4.01     3.15       1965    1
X3_includedhorm_contra:menstruationpre     0.28      0.28    -0.28     0.81       4000    1
X3_includedhorm_contra:menstruationyes     0.31      0.25    -0.16     0.81       4000    1
X3_includedhorm_contra:fertile             0.75      0.63    -0.47     1.99       4000    1
X4_includedhorm_contra                     1.19      0.21     0.77     1.60       1116    1
X4_menstruationpre                         0.07      0.20    -0.32     0.46       2602    1
X4_menstruationyes                        -0.20      0.20    -0.61     0.19       3034    1
X4_fertile                                 0.08      0.42    -0.77     0.91       2698    1
X4_fertile_mean                           -1.18      1.26    -3.64     1.25       1534    1
X4_includedhorm_contra:menstruationpre     0.03      0.17    -0.32     0.37       4000    1
X4_includedhorm_contra:menstruationyes     0.18      0.18    -0.15     0.54       4000    1
X4_includedhorm_contra:fertile             0.05      0.37    -0.67     0.79       4000    1
X5_includedhorm_contra                     0.12      0.53    -0.91     1.13       1092    1
X5_menstruationpre                         0.16      0.68    -1.21     1.49       3310    1
X5_menstruationyes                        -0.96      0.73    -2.53     0.30       3148    1
X5_fertile                                 0.49      1.08    -2.03     2.39       2329    1
X5_fertile_mean                           -3.84      3.49   -10.76     3.01       1514    1
X5_includedhorm_contra:menstruationpre     0.12      0.41    -0.71     0.91       4000    1
X5_includedhorm_contra:menstruationyes     0.92      0.40     0.15     1.74       4000    1
X5_includedhorm_contra:fertile            -0.44      0.72    -1.87     0.97       4000    1
X6_includedhorm_contra                    -0.76      0.81    -2.40     0.80       1770    1
X6_menstruationpre                         0.66      1.26    -2.13     2.98       3225    1
X6_menstruationyes                        -0.48      1.09    -3.14     1.27       2166    1
X6_fertile                                 1.19      1.57    -2.49     3.81       2424    1
X6_fertile_mean                           -8.37      5.38   -19.34     1.82       2048    1
X6_includedhorm_contra:menstruationpre    -0.69      0.86    -2.37     0.98       4000    1
X6_includedhorm_contra:menstruationyes     0.91      0.70    -0.47     2.34       4000    1
X6_includedhorm_contra:fertile            -0.87      1.37    -3.60     1.77       4000    1
X7_includedhorm_contra                     0.26      0.47    -0.68     1.23       1417    1
X7_menstruationpre                        -0.53      0.65    -2.13     0.49       2032    1
X7_menstruationyes                        -1.48      1.10    -3.94     0.37       2086    1
X7_fertile                                 0.21      1.42    -2.73     2.92       2871    1
X7_fertile_mean                            0.05      2.89    -5.72     5.69       1757    1
X7_includedhorm_contra:menstruationpre     0.01      0.37    -0.72     0.79       4000    1
X7_includedhorm_contra:menstruationyes    -0.43      0.41    -1.25     0.34       4000    1
X7_includedhorm_contra:fertile            -0.77      0.87    -2.46     0.94       4000    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Error: Error: Marginal plots are not yet implemented for categorical models.

desirability_1

Item text:

… habe ich mich sexuell begehrenswert gefühlt.

Item translation:

25. I felt sexually desirable.

Choices:

choice value frequency percent
1 Stimme nicht zu 3063 0.1
2 Stimme überwiegend nicht zu 2944 0.1
3 Stimme eher nicht zu 6093 0.2
4 Stimme eher zu 9126 0.31
5 Stimme überwiegend zu 5787 0.19
6 Stimme voll zu 2868 0.1

Model

Model summary

 Family: cumulative(logit) 
Formula: desirability_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26549) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 77829.21; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.60      0.05     1.51     1.69        938 1.01
sd(fertile)                              1.52      0.12     1.29     1.74        704 1.00
sd(menstruationpre)                      0.65      0.06     0.54     0.77        730 1.01
sd(menstruationyes)                      0.66      0.06     0.54     0.77        728 1.01
cor(Intercept,fertile)                  -0.29      0.06    -0.41    -0.16       1909 1.00
cor(Intercept,menstruationpre)          -0.15      0.08    -0.29     0.01       1762 1.00
cor(fertile,menstruationpre)             0.34      0.10     0.12     0.51        708 1.00
cor(Intercept,menstruationyes)          -0.25      0.07    -0.38    -0.11       2404 1.00
cor(fertile,menstruationyes)             0.17      0.11    -0.06     0.37        650 1.00
cor(menstruationpre,menstruationyes)     0.37      0.10     0.15     0.56        548 1.02

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -3.07      0.13    -3.31    -2.83        904 1.01
Intercept[2]                           -1.99      0.12    -2.23    -1.75        886 1.01
Intercept[3]                           -0.60      0.12    -0.84    -0.36        871 1.01
Intercept[4]                            1.16      0.12     0.92     1.40        775 1.01
Intercept[5]                            2.89      0.13     2.66     3.14        784 1.01
includedhorm_contra                    -0.04      0.11    -0.26     0.17        645 1.00
menstruationpre                        -0.21      0.07    -0.34    -0.07       2230 1.00
menstruationyes                        -0.43      0.06    -0.55    -0.30       2054 1.00
fertile                                 0.24      0.14    -0.03     0.52       1971 1.00
fertile_mean                            0.00      0.53    -1.01     1.05       1254 1.00
includedhorm_contra:menstruationpre     0.09      0.09    -0.08     0.25       2164 1.00
includedhorm_contra:menstruationyes     0.12      0.08    -0.04     0.28       2045 1.00
includedhorm_contra:fertile            -0.46      0.18    -0.80    -0.11       1877 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

desirability_partner

Item text:

…fand ich meinen Partner besonders sexuell anziehend.

Item translation:

26. I found my partner sexually desirable.

Choices:

choice value frequency percent
1 Stimme nicht zu 3019 0.1
2 Stimme überwiegend nicht zu 2413 0.08
3 Stimme eher nicht zu 5435 0.18
4 Stimme eher zu 9046 0.3
5 Stimme überwiegend zu 6032 0.2
6 Stimme voll zu 3934 0.13

Model

Model summary

 Family: cumulative(logit) 
Formula: desirability_partner ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26548) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 76199.22; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.73      0.05     1.64     1.83        714 1.01
sd(fertile)                              1.70      0.12     1.47     1.93        696 1.01
sd(menstruationpre)                      0.76      0.06     0.65     0.87        700 1.00
sd(menstruationyes)                      0.84      0.06     0.72     0.94        690 1.00
cor(Intercept,fertile)                  -0.26      0.06    -0.36    -0.14       1569 1.00
cor(Intercept,menstruationpre)          -0.17      0.07    -0.30    -0.03       1839 1.00
cor(fertile,menstruationpre)             0.24      0.09     0.05     0.39        494 1.01
cor(Intercept,menstruationyes)          -0.16      0.06    -0.28    -0.04       1618 1.00
cor(fertile,menstruationyes)             0.24      0.09     0.07     0.41        513 1.01
cor(menstruationpre,menstruationyes)     0.30      0.09     0.12     0.46        548 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -2.95      0.13    -3.22    -2.69        551 1.00
Intercept[2]                           -2.00      0.13    -2.26    -1.74        549 1.00
Intercept[3]                           -0.63      0.13    -0.89    -0.37        543 1.00
Intercept[4]                            1.20      0.13     0.94     1.46        548 1.00
Intercept[5]                            2.86      0.13     2.59     3.12        556 1.00
includedhorm_contra                     0.40      0.12     0.18     0.64        359 1.01
menstruationpre                        -0.08      0.07    -0.22     0.07       1528 1.00
menstruationyes                        -0.21      0.07    -0.34    -0.07       1643 1.00
fertile                                 0.36      0.15     0.07     0.65       1333 1.00
fertile_mean                           -0.14      0.56    -1.27     0.93        931 1.00
includedhorm_contra:menstruationpre     0.02      0.09    -0.16     0.21       1610 1.00
includedhorm_contra:menstruationyes     0.05      0.09    -0.13     0.23       1790 1.00
includedhorm_contra:fertile            -0.61      0.19    -1.00    -0.24       1364 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_10

Item text:

… habe ich mich zu einem Freund, Bekannten oder Kollegen hingezogen gefühlt

Item translation:

54. I was attracted to a friend, acquaintance, or colleague.

Choices:

choice value frequency percent
1 Stimme nicht zu 24168 0.81
2 Stimme überwiegend nicht zu 1382 0.05
3 Stimme eher nicht zu 1145 0.04
4 Stimme eher zu 1629 0.05
5 Stimme überwiegend zu 781 0.03
6 Stimme voll zu 768 0.03

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_10 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 31332.22; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.46      0.10     2.28     2.65        753 1.01
sd(fertile)                              1.85      0.21     1.45     2.25        324 1.02
sd(menstruationpre)                      0.74      0.11     0.52     0.96        497 1.01
sd(menstruationyes)                      0.95      0.10     0.74     1.16        860 1.01
cor(Intercept,fertile)                  -0.10      0.11    -0.30     0.12       1607 1.00
cor(Intercept,menstruationpre)           0.07      0.14    -0.21     0.34       1590 1.00
cor(fertile,menstruationpre)             0.06      0.17    -0.29     0.36        233 1.02
cor(Intercept,menstruationyes)           0.03      0.11    -0.19     0.24       1394 1.00
cor(fertile,menstruationyes)             0.40      0.11     0.17     0.61        396 1.01
cor(menstruationpre,menstruationyes)     0.65      0.12     0.39     0.86        439 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            2.05      0.19     1.68     2.44        668 1.00
Intercept[2]                            2.63      0.19     2.26     3.01        675 1.00
Intercept[3]                            3.20      0.19     2.83     3.59        680 1.00
Intercept[4]                            4.44      0.19     4.06     4.83        685 1.00
Intercept[5]                            5.55      0.20     5.15     5.95        710 1.00
includedhorm_contra                    -0.78      0.18    -1.15    -0.42        354 1.01
menstruationpre                        -0.38      0.13    -0.64    -0.12       1805 1.00
menstruationyes                        -0.25      0.12    -0.50    -0.01       1965 1.00
fertile                                 0.35      0.24    -0.13     0.82       1901 1.00
fertile_mean                            0.14      0.75    -1.35     1.64       1166 1.00
includedhorm_contra:menstruationpre     0.14      0.14    -0.14     0.41       1680 1.00
includedhorm_contra:menstruationyes    -0.02      0.14    -0.31     0.25       1640 1.00
includedhorm_contra:fertile            -0.50      0.27    -1.04     0.02       1721 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_11

Item text:

… habe ich mich zu einem Mann hingezogen gefühlt, den ich nicht kannte.

Item translation:

55. I was attracted to a stranger.

Choices:

choice value frequency percent
1 Stimme nicht zu 26789 0.9
2 Stimme überwiegend nicht zu 1080 0.04
3 Stimme eher nicht zu 728 0.02
4 Stimme eher zu 773 0.03
5 Stimme überwiegend zu 299 0.01
6 Stimme voll zu 204 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_11 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 20657.91; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.16      0.10     1.97     2.36        782 1.00
sd(fertile)                              1.55      0.29     0.96     2.09        355 1.01
sd(menstruationpre)                      0.61      0.15     0.31     0.89        448 1.00
sd(menstruationyes)                      0.78      0.13     0.53     1.03        564 1.01
cor(Intercept,fertile)                  -0.41      0.13    -0.64    -0.14       1847 1.00
cor(Intercept,menstruationpre)          -0.32      0.17    -0.63     0.05       2298 1.00
cor(fertile,menstruationpre)             0.41      0.24    -0.14     0.80        407 1.01
cor(Intercept,menstruationyes)          -0.30      0.14    -0.56    -0.01       1722 1.00
cor(fertile,menstruationyes)             0.33      0.21    -0.13     0.69        335 1.01
cor(menstruationpre,menstruationyes)     0.84      0.12     0.56     0.98        389 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            2.70      0.21     2.27     3.10       1132 1.01
Intercept[2]                            3.37      0.21     2.94     3.78       1133 1.01
Intercept[3]                            3.99      0.21     3.56     4.40       1144 1.00
Intercept[4]                            5.14      0.22     4.71     5.56       1177 1.00
Intercept[5]                            6.20      0.23     5.75     6.63       1278 1.00
includedhorm_contra                    -0.62      0.17    -0.96    -0.28        900 1.00
menstruationpre                        -0.44      0.16    -0.76    -0.14       2402 1.00
menstruationyes                        -0.28      0.15    -0.60     0.00       2255 1.00
fertile                                 0.58      0.28     0.02     1.15       2033 1.00
fertile_mean                           -1.54      0.95    -3.59     0.14       1485 1.01
includedhorm_contra:menstruationpre     0.31      0.16     0.00     0.62       2753 1.00
includedhorm_contra:menstruationyes     0.40      0.16     0.09     0.71       2497 1.00
includedhorm_contra:fertile            -0.29      0.30    -0.87     0.28       2432 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_12

Item text:

… sind mir attraktive Männer in meiner Umgebung aufgefallen.

Item translation:

56. I noticed attractive men around me.

Choices:

choice value frequency percent
1 Stimme nicht zu 16870 0.56
2 Stimme überwiegend nicht zu 2130 0.07
3 Stimme eher nicht zu 2522 0.08
4 Stimme eher zu 4655 0.16
5 Stimme überwiegend zu 2281 0.08
6 Stimme voll zu 1415 0.05

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_12 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 61689.6; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.69      0.06     1.58     1.80        714 1.01
sd(fertile)                              1.40      0.15     1.08     1.69        325 1.01
sd(menstruationpre)                      0.48      0.09     0.28     0.64        296 1.02
sd(menstruationyes)                      0.65      0.07     0.50     0.79        559 1.01
cor(Intercept,fertile)                  -0.20      0.08    -0.35    -0.02       1521 1.00
cor(Intercept,menstruationpre)          -0.12      0.13    -0.36     0.15       1438 1.01
cor(fertile,menstruationpre)             0.45      0.16     0.08     0.71        307 1.01
cor(Intercept,menstruationyes)          -0.05      0.10    -0.24     0.15       1384 1.00
cor(fertile,menstruationyes)             0.49      0.12     0.23     0.70        405 1.01
cor(menstruationpre,menstruationyes)     0.76      0.13     0.47     0.96        175 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            0.29      0.14     0.02     0.57        671 1.00
Intercept[2]                            0.75      0.14     0.47     1.03        675 1.00
Intercept[3]                            1.31      0.14     1.03     1.59        680 1.00
Intercept[4]                            2.68      0.14     2.40     2.96        691 1.00
Intercept[5]                            3.97      0.14     3.70     4.26        711 1.00
includedhorm_contra                    -0.20      0.13    -0.46     0.05        486 1.01
menstruationpre                        -0.27      0.07    -0.42    -0.13       1681 1.00
menstruationyes                        -0.28      0.08    -0.44    -0.13       1564 1.00
fertile                                 0.52      0.16     0.22     0.83       1610 1.00
fertile_mean                            0.05      0.59    -1.08     1.22       1034 1.00
includedhorm_contra:menstruationpre     0.17      0.09    -0.01     0.35       1849 1.00
includedhorm_contra:menstruationyes     0.41      0.09     0.23     0.60       1756 1.00
includedhorm_contra:fertile            -0.41      0.19    -0.79    -0.04       1663 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_13

Item text:

… hatte ich sexuelle Fantasien mit anderen Männern als meinem Partner.

Item translation:

57. I had sexual fantasies about men other than my partner.

Choices:

choice value frequency percent
1 Stimme nicht zu 24682 0.83
2 Stimme überwiegend nicht zu 1332 0.04
3 Stimme eher nicht zu 930 0.03
4 Stimme eher zu 1396 0.05
5 Stimme überwiegend zu 663 0.02
6 Stimme voll zu 870 0.03

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_13 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 29462.48; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.32      0.10     2.14     2.51        730 1.00
sd(fertile)                              2.02      0.20     1.64     2.41        564 1.00
sd(menstruationpre)                      0.88      0.12     0.65     1.11        505 1.01
sd(menstruationyes)                      0.79      0.11     0.58     1.00        547 1.01
cor(Intercept,fertile)                  -0.08      0.11    -0.28     0.13       1861 1.00
cor(Intercept,menstruationpre)          -0.12      0.12    -0.36     0.12       1950 1.00
cor(fertile,menstruationpre)             0.35      0.13     0.05     0.58        592 1.00
cor(Intercept,menstruationyes)           0.00      0.13    -0.26     0.25       2053 1.00
cor(fertile,menstruationyes)             0.42      0.13     0.14     0.66        705 1.01
cor(menstruationpre,menstruationyes)     0.79      0.10     0.57     0.96        545 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            1.97      0.19     1.61     2.34        952    1
Intercept[2]                            2.54      0.19     2.18     2.92        960    1
Intercept[3]                            3.02      0.19     2.65     3.39        913    1
Intercept[4]                            4.04      0.19     3.67     4.41        918    1
Intercept[5]                            4.86      0.19     4.49     5.24        937    1
includedhorm_contra                    -0.93      0.18    -1.28    -0.60        740    1
menstruationpre                        -0.41      0.13    -0.68    -0.15       2175    1
menstruationyes                        -0.43      0.12    -0.67    -0.20       2203    1
fertile                                 0.60      0.25     0.10     1.09       2223    1
fertile_mean                           -0.45      0.75    -2.00     0.94       1608    1
includedhorm_contra:menstruationpre     0.12      0.15    -0.17     0.41       2524    1
includedhorm_contra:menstruationyes     0.22      0.14    -0.06     0.48       2653    1
includedhorm_contra:fertile            -0.78      0.30    -1.36    -0.21       2293    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_2

Item text:

…war es mir wichtig, dass mich andere Männer als attraktiv wahrnehmen.

Item translation:

46. It was important to me that other men perceive me to be attractive.

Choices:

choice value frequency percent
1 Stimme nicht zu 12039 0.4
2 Stimme überwiegend nicht zu 3570 0.12
3 Stimme eher nicht zu 4078 0.14
4 Stimme eher zu 5888 0.2
5 Stimme überwiegend zu 2883 0.1
6 Stimme voll zu 1416 0.05

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 67203.83; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.18      0.06     2.06     2.32        716 1.01
sd(fertile)                              1.64      0.13     1.38     1.89        529 1.01
sd(menstruationpre)                      0.57      0.07     0.42     0.71        492 1.00
sd(menstruationyes)                      0.77      0.06     0.65     0.90        867 1.00
cor(Intercept,fertile)                  -0.13      0.07    -0.28     0.01       2082 1.00
cor(Intercept,menstruationpre)          -0.15      0.10    -0.34     0.06       2079 1.00
cor(fertile,menstruationpre)             0.44      0.11     0.21     0.63        593 1.00
cor(Intercept,menstruationyes)          -0.26      0.08    -0.41    -0.11       2012 1.00
cor(fertile,menstruationyes)             0.48      0.09     0.29     0.65        581 1.01
cor(menstruationpre,menstruationyes)     0.79      0.09     0.59     0.95        192 1.04

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -0.67      0.17    -1.00    -0.34        448 1.00
Intercept[2]                            0.17      0.17    -0.16     0.51        445 1.00
Intercept[3]                            1.13      0.17     0.80     1.47        444 1.00
Intercept[4]                            2.83      0.17     2.50     3.17        446 1.01
Intercept[5]                            4.49      0.17     4.16     4.83        459 1.01
includedhorm_contra                    -0.29      0.15    -0.59    -0.01        291 1.01
menstruationpre                        -0.29      0.07    -0.44    -0.15       1710 1.00
menstruationyes                        -0.37      0.07    -0.52    -0.23       1527 1.00
fertile                                 0.17      0.16    -0.14     0.47       1499 1.00
fertile_mean                            1.23      0.74    -0.06     2.80        594 1.00
includedhorm_contra:menstruationpre     0.21      0.09     0.03     0.38       1733 1.00
includedhorm_contra:menstruationyes     0.34      0.09     0.16     0.53       1571 1.00
includedhorm_contra:fertile            -0.24      0.20    -0.62     0.15       1518 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_3

Item text:

… habe ich Komplimente von anderen Männern erhalten.

Item translation:

47. I received compliments from other men.

Choices:

choice value frequency percent
1 Stimme nicht zu 19277 0.65
2 Stimme überwiegend nicht zu 2631 0.09
3 Stimme eher nicht zu 2303 0.08
4 Stimme eher zu 2754 0.09
5 Stimme überwiegend zu 1518 0.05
6 Stimme voll zu 1390 0.05

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 55308.76; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.57      0.06     1.46     1.68       1022 1.00
sd(fertile)                              1.13      0.20     0.69     1.48        192 1.02
sd(menstruationpre)                      0.53      0.09     0.34     0.70        211 1.01
sd(menstruationyes)                      0.62      0.08     0.45     0.77        330 1.00
cor(Intercept,fertile)                   0.01      0.13    -0.22     0.29        372 1.01
cor(Intercept,menstruationpre)           0.09      0.14    -0.16     0.37        365 1.01
cor(fertile,menstruationpre)             0.36      0.22    -0.17     0.70        123 1.02
cor(Intercept,menstruationyes)          -0.13      0.11    -0.34     0.08       1161 1.00
cor(fertile,menstruationyes)             0.36      0.20    -0.10     0.66        151 1.01
cor(menstruationpre,menstruationyes)     0.82      0.11     0.56     0.97        230 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            0.63      0.14     0.36     0.89        791 1.01
Intercept[2]                            1.24      0.14     0.97     1.50        791 1.01
Intercept[3]                            1.83      0.14     1.56     2.10        795 1.01
Intercept[4]                            2.80      0.14     2.53     3.07        803 1.01
Intercept[5]                            3.74      0.14     3.46     4.01        827 1.01
includedhorm_contra                    -0.33      0.12    -0.56    -0.11        642 1.01
menstruationpre                        -0.28      0.08    -0.44    -0.12       1851 1.00
menstruationyes                        -0.22      0.08    -0.37    -0.06       1758 1.00
fertile                                 0.07      0.16    -0.24     0.37       1805 1.00
fertile_mean                            0.13      0.57    -0.99     1.22       1270 1.00
includedhorm_contra:menstruationpre     0.18      0.10    -0.02     0.38       2080 1.00
includedhorm_contra:menstruationyes     0.15      0.10    -0.04     0.34       1817 1.00
includedhorm_contra:fertile            -0.27      0.19    -0.64     0.11       1935 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_4

Item text:

… habe ich via Medien mit Freunden, Bekannten oder Kollegen geflirtet.

Item translation:

48. I flirted via media with friends, acquaintances, or colleagues.

Choices:

choice value frequency percent
1 Stimme nicht zu 26262 0.88
2 Stimme überwiegend nicht zu 1237 0.04
3 Stimme eher nicht zu 763 0.03
4 Stimme eher zu 825 0.03
5 Stimme überwiegend zu 355 0.01
6 Stimme voll zu 431 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_4 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 21161.83; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.57      0.11     2.35     2.80        658 1.01
sd(fertile)                              1.93      0.27     1.39     2.43        408 1.02
sd(menstruationpre)                      0.82      0.13     0.55     1.08        501 1.01
sd(menstruationyes)                      0.68      0.16     0.34     0.97        329 1.02
cor(Intercept,fertile)                   0.00      0.14    -0.26     0.28       1331 1.01
cor(Intercept,menstruationpre)           0.03      0.15    -0.27     0.33       1174 1.00
cor(fertile,menstruationpre)             0.25      0.19    -0.16     0.57        333 1.02
cor(Intercept,menstruationyes)          -0.04      0.18    -0.39     0.32       1475 1.00
cor(fertile,menstruationyes)             0.28      0.22    -0.24     0.63        255 1.02
cor(menstruationpre,menstruationyes)     0.72      0.16     0.36     0.96        590 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            3.18      0.23     2.73     3.63        590 1.01
Intercept[2]                            3.94      0.23     3.48     4.39        598 1.01
Intercept[3]                            4.55      0.23     4.09     5.01        614 1.01
Intercept[4]                            5.56      0.24     5.10     6.02        617 1.01
Intercept[5]                            6.44      0.24     5.96     6.91        635 1.01
includedhorm_contra                    -0.61      0.20    -1.01    -0.21        405 1.01
menstruationpre                        -0.36      0.17    -0.69    -0.04       1796 1.00
menstruationyes                        -0.22      0.16    -0.54     0.08       1333 1.01
fertile                                -0.11      0.33    -0.75     0.54       1707 1.00
fertile_mean                            0.01      0.83    -1.69     1.64       1337 1.00
includedhorm_contra:menstruationpre     0.27      0.17    -0.06     0.60       2039 1.00
includedhorm_contra:menstruationyes     0.22      0.16    -0.10     0.53       2174 1.00
includedhorm_contra:fertile            -0.30      0.33    -0.97     0.34       2136 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_5

Item text:

… bin ich ohne meinen Partner ausgegangen.

Item translation:

51. I went out without my partner.

Choices:

choice value frequency percent
1 Stimme nicht zu 21919 0.73
2 Stimme überwiegend nicht zu 991 0.03
3 Stimme eher nicht zu 877 0.03
4 Stimme eher zu 1804 0.06
5 Stimme überwiegend zu 1429 0.05
6 Stimme voll zu 2853 0.1

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 46661.05; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.33      0.05     1.23     1.44        832 1.01
sd(fertile)                              1.16      0.20     0.74     1.54        250 1.02
sd(menstruationpre)                      0.43      0.13     0.17     0.66        219 1.02
sd(menstruationyes)                      0.67      0.09     0.49     0.84        420 1.02
cor(Intercept,fertile)                  -0.18      0.12    -0.40     0.08        802 1.01
cor(Intercept,menstruationpre)           0.10      0.19    -0.23     0.52        407 1.01
cor(fertile,menstruationpre)             0.17      0.29    -0.51     0.63        201 1.02
cor(Intercept,menstruationyes)          -0.12      0.11    -0.33     0.11        643 1.01
cor(fertile,menstruationyes)             0.43      0.17     0.04     0.73        250 1.01
cor(menstruationpre,menstruationyes)     0.64      0.17     0.24     0.91        268 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            1.43      0.13     1.17     1.67       1109 1.00
Intercept[2]                            1.67      0.13     1.41     1.91       1111 1.00
Intercept[3]                            1.89      0.13     1.63     2.13        979 1.00
Intercept[4]                            2.40      0.13     2.15     2.65        988 1.00
Intercept[5]                            2.93      0.13     2.67     3.17       1007 1.00
includedhorm_contra                     0.29      0.11     0.08     0.51        769 1.01
menstruationpre                        -0.06      0.09    -0.24     0.12       1695 1.00
menstruationyes                        -0.06      0.09    -0.23     0.12       1889 1.00
fertile                                 0.29      0.18    -0.07     0.65       1734 1.00
fertile_mean                           -0.96      0.56    -2.10     0.13       1510 1.00
includedhorm_contra:menstruationpre    -0.02      0.10    -0.22     0.18       1933 1.00
includedhorm_contra:menstruationyes     0.15      0.11    -0.06     0.36       1859 1.00
includedhorm_contra:fertile            -0.24      0.21    -0.66     0.18       1718 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_6

Item text:

… bin ich ohne meinen Partner an einen Ort gegangen, wo man Männer treffen kann.

Item translation:

52. I went out without my partner to a social event where one might meet men.

Choices:

choice value frequency percent
1 Stimme nicht zu 18929 0.63
2 Stimme überwiegend nicht zu 1310 0.04
3 Stimme eher nicht zu 1403 0.05
4 Stimme eher zu 2853 0.1
5 Stimme überwiegend zu 2036 0.07
6 Stimme voll zu 3342 0.11

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_6 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 54212.02; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.97      0.07     1.84     2.11        909 1.00
sd(fertile)                              1.58      0.15     1.28     1.87        440 1.01
sd(menstruationpre)                      0.46      0.11     0.18     0.65        189 1.03
sd(menstruationyes)                      0.62      0.09     0.43     0.77        358 1.01
cor(Intercept,fertile)                  -0.04      0.10    -0.24     0.15       1820 1.00
cor(Intercept,menstruationpre)          -0.05      0.17    -0.37     0.32       1154 1.00
cor(fertile,menstruationpre)             0.28      0.19    -0.13     0.59        307 1.01
cor(Intercept,menstruationyes)          -0.06      0.12    -0.28     0.19       1949 1.00
cor(fertile,menstruationyes)             0.23      0.14    -0.08     0.48        353 1.01
cor(menstruationpre,menstruationyes)     0.62      0.17     0.20     0.90        172 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            1.16      0.16     0.85     1.47        543 1.01
Intercept[2]                            1.46      0.16     1.15     1.78        547 1.01
Intercept[3]                            1.81      0.16     1.50     2.12        548 1.01
Intercept[4]                            2.60      0.16     2.29     2.92        552 1.01
Intercept[5]                            3.36      0.16     3.05     3.68        557 1.01
includedhorm_contra                     0.43      0.15     0.14     0.73        399 1.01
menstruationpre                        -0.10      0.09    -0.27     0.07       2003 1.00
menstruationyes                        -0.15      0.09    -0.32     0.02       1925 1.00
fertile                                 0.06      0.19    -0.32     0.43       1915 1.00
fertile_mean                           -0.41      0.66    -1.74     0.88       1153 1.00
includedhorm_contra:menstruationpre     0.05      0.10    -0.15     0.24       2191 1.00
includedhorm_contra:menstruationyes     0.20      0.10     0.00     0.40       2039 1.00
includedhorm_contra:fertile            -0.13      0.22    -0.55     0.29       1885 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_7

Item text:

… habe ich mir Gedanken über einen anderen potentiellen Partner gemacht.

Item translation:

53. I thought about another potential partner.

Choices:

choice value frequency percent
1 Stimme nicht zu 22819 0.76
2 Stimme überwiegend nicht zu 2032 0.07
3 Stimme eher nicht zu 1579 0.05
4 Stimme eher zu 1865 0.06
5 Stimme überwiegend zu 875 0.03
6 Stimme voll zu 703 0.02

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_7 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 34839.06; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.70      0.10     2.52     2.91        629 1.00
sd(fertile)                              2.41      0.19     2.05     2.79        625 1.01
sd(menstruationpre)                      1.03      0.10     0.84     1.23       1095 1.00
sd(menstruationyes)                      1.08      0.09     0.89     1.26        784 1.00
cor(Intercept,fertile)                  -0.21      0.08    -0.37    -0.04       1684 1.00
cor(Intercept,menstruationpre)           0.05      0.10    -0.16     0.25       1512 1.00
cor(fertile,menstruationpre)             0.24      0.10     0.02     0.44        756 1.00
cor(Intercept,menstruationyes)          -0.03      0.10    -0.21     0.16       1632 1.00
cor(fertile,menstruationyes)             0.53      0.09     0.35     0.69        749 1.01
cor(menstruationpre,menstruationyes)     0.60      0.09     0.41     0.75        774 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            1.70      0.20     1.29     2.09        549    1
Intercept[2]                            2.46      0.20     2.07     2.86        556    1
Intercept[3]                            3.24      0.20     2.85     3.65        552    1
Intercept[4]                            4.66      0.21     4.26     5.06        516    1
Intercept[5]                            5.95      0.21     5.54     6.36        539    1
includedhorm_contra                    -0.67      0.19    -1.06    -0.31        493    1
menstruationpre                        -0.61      0.14    -0.88    -0.35       1838    1
menstruationyes                        -0.23      0.12    -0.48     0.01       1480    1
fertile                                 0.50      0.24     0.03     0.98       1304    1
fertile_mean                           -0.04      0.77    -1.65     1.43       1460    1
includedhorm_contra:menstruationpre     0.35      0.15     0.06     0.63       1868    1
includedhorm_contra:menstruationyes     0.07      0.14    -0.21     0.36       1954    1
includedhorm_contra:fertile            -0.58      0.28    -1.14    -0.01       1257    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_8

Item text:

… habe ich mit Männern geflirtet, die ich nicht kannte.

Item translation:

50. I flirted with strangers.

Choices:

choice value frequency percent
1 Stimme nicht zu 26492 0.89
2 Stimme überwiegend nicht zu 1258 0.04
3 Stimme eher nicht zu 880 0.03
4 Stimme eher zu 766 0.03
5 Stimme überwiegend zu 277 0.01
6 Stimme voll zu 200 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_8 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 22448.63; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.82      0.08     1.68     1.98        831 1.00
sd(fertile)                              0.69      0.32     0.07     1.28        157 1.01
sd(menstruationpre)                      0.19      0.14     0.01     0.50        337 1.01
sd(menstruationyes)                      0.28      0.17     0.01     0.62        341 1.01
cor(Intercept,fertile)                  -0.32      0.26    -0.77     0.29       1704 1.00
cor(Intercept,menstruationpre)          -0.02      0.37    -0.72     0.74       2803 1.00
cor(fertile,menstruationpre)             0.01      0.44    -0.81     0.81        831 1.00
cor(Intercept,menstruationyes)          -0.06      0.30    -0.65     0.58       2529 1.00
cor(fertile,menstruationyes)            -0.07      0.42    -0.84     0.70        591 1.01
cor(menstruationpre,menstruationyes)     0.25      0.44    -0.71     0.90        495 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            2.75      0.17     2.43     3.09       1253    1
Intercept[2]                            3.46      0.17     3.13     3.80       1258    1
Intercept[3]                            4.15      0.17     3.82     4.49       1261    1
Intercept[4]                            5.23      0.18     4.90     5.58       1349    1
Intercept[5]                            6.20      0.19     5.83     6.57       1463    1
includedhorm_contra                    -0.40      0.15    -0.69    -0.10        842    1
menstruationpre                        -0.37      0.12    -0.62    -0.13       2019    1
menstruationyes                        -0.22      0.12    -0.47     0.01       2275    1
fertile                                 0.26      0.25    -0.22     0.75       2262    1
fertile_mean                           -0.26      0.69    -1.62     1.04       1597    1
includedhorm_contra:menstruationpre     0.32      0.14     0.05     0.60       2446    1
includedhorm_contra:menstruationyes     0.33      0.13     0.08     0.59       2924    1
includedhorm_contra:fertile            -0.21      0.26    -0.74     0.30       2198    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_9

Item text:

… habe ich mit Freunden, Kollegen oder Bekannten geflirtet.

Item translation:

49. I flirted with friends, acquaintances, or colleagues.

Choices:

choice value frequency percent
1 Stimme nicht zu 25338 0.85
2 Stimme überwiegend nicht zu 1245 0.04
3 Stimme eher nicht zu 995 0.03
4 Stimme eher zu 1262 0.04
5 Stimme überwiegend zu 522 0.02
6 Stimme voll zu 511 0.02

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_9 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 28373.84; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.00      0.08     1.84     2.18        787 1.01
sd(fertile)                              1.41      0.21     1.00     1.82        422 1.01
sd(menstruationpre)                      0.53      0.14     0.25     0.79        330 1.01
sd(menstruationyes)                      0.62      0.14     0.30     0.88        272 1.02
cor(Intercept,fertile)                  -0.17      0.13    -0.41     0.09       2484 1.00
cor(Intercept,menstruationpre)           0.11      0.19    -0.26     0.47       1265 1.00
cor(fertile,menstruationpre)            -0.35      0.28    -0.86     0.17        295 1.02
cor(Intercept,menstruationyes)           0.06      0.17    -0.26     0.40        767 1.01
cor(fertile,menstruationyes)             0.33      0.22    -0.15     0.70        353 1.01
cor(menstruationpre,menstruationyes)     0.27      0.28    -0.36     0.72        269 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            2.39      0.18     2.05     2.73        825    1
Intercept[2]                            2.93      0.18     2.58     3.27        827    1
Intercept[3]                            3.47      0.18     3.13     3.82        812    1
Intercept[4]                            4.53      0.18     4.19     4.88        850    1
Intercept[5]                            5.45      0.18     5.09     5.81        861    1
includedhorm_contra                    -0.51      0.16    -0.82    -0.20        506    1
menstruationpre                        -0.40      0.13    -0.65    -0.15       2240    1
menstruationyes                        -0.21      0.12    -0.44     0.02       2380    1
fertile                                 0.34      0.23    -0.11     0.78       2133    1
fertile_mean                            0.31      0.71    -1.02     1.72       1529    1
includedhorm_contra:menstruationpre     0.27      0.13     0.01     0.53       2933    1
includedhorm_contra:menstruationyes     0.01      0.13    -0.25     0.26       3015    1
includedhorm_contra:fertile            -0.45      0.26    -0.98     0.06       2528    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

extra_pair_intimacy_sex

Item text:


Item translation:


Choices:

choice value frequency percent
0 NA 29467 0.99
1 NA 266 0.01
2 NA 134 0

Model

Model summary

 Family: cumulative(logit) 
Formula: extra_pair_intimacy_sex ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26567) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 2813.33; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.93      0.28     2.42     3.52        857 1.00
sd(fertile)                              1.14      0.64     0.07     2.45        686 1.00
sd(menstruationpre)                      0.26      0.20     0.01     0.73       1972 1.00
sd(menstruationyes)                      0.57      0.35     0.03     1.31        598 1.01
cor(Intercept,fertile)                   0.21      0.33    -0.51     0.81       4000 1.00
cor(Intercept,menstruationpre)           0.05      0.44    -0.78     0.83       4000 1.00
cor(fertile,menstruationpre)             0.00      0.45    -0.80     0.81       4000 1.00
cor(Intercept,menstruationyes)           0.00      0.35    -0.71     0.67       4000 1.00
cor(fertile,menstruationyes)            -0.11      0.42    -0.84     0.71       1701 1.00
cor(menstruationpre,menstruationyes)     0.03      0.45    -0.80     0.83       1486 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            6.85      0.49     5.91     7.86       1659    1
Intercept[2]                            8.28      0.50     7.33     9.31       1686    1
includedhorm_contra                    -1.28      0.38    -2.02    -0.55       1481    1
menstruationpre                        -0.09      0.32    -0.78     0.49       4000    1
menstruationyes                        -0.04      0.40    -0.90     0.70       3163    1
fertile                                -0.32      0.76    -2.04     0.95       1895    1
fertile_mean                           -0.82      1.33    -3.97     1.37       4000    1
includedhorm_contra:menstruationpre    -0.20      0.38    -0.97     0.54       4000    1
includedhorm_contra:menstruationyes    -0.07      0.37    -0.82     0.65       4000    1
includedhorm_contra:fertile            -0.24      0.65    -1.55     0.98       4000    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

jealousy_1

Item text:

… habe ich meinen Partner gefragt, mit wem er den Tag verbracht hat.

Item translation:

33. I asked my partner with whom he spent the day.

Choices:

choice value frequency percent
1 Stimme nicht zu 16788 0.56
2 Stimme überwiegend nicht zu 1826 0.06
3 Stimme eher nicht zu 2111 0.07
4 Stimme eher zu 3706 0.12
5 Stimme überwiegend zu 2333 0.08
6 Stimme voll zu 3113 0.1

Model

Model summary

 Family: cumulative(logit) 
Formula: jealousy_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26546) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 58931.67; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.10      0.07     1.97     2.23        593 1.00
sd(fertile)                              1.55      0.14     1.26     1.81        575 1.01
sd(menstruationpre)                      0.56      0.10     0.34     0.73        316 1.01
sd(menstruationyes)                      0.62      0.09     0.44     0.77        378 1.01
cor(Intercept,fertile)                  -0.03      0.09    -0.21     0.15       2098 1.00
cor(Intercept,menstruationpre)           0.20      0.13    -0.06     0.47        776 1.01
cor(fertile,menstruationpre)             0.14      0.17    -0.25     0.43        359 1.02
cor(Intercept,menstruationyes)           0.10      0.12    -0.13     0.34       1612 1.00
cor(fertile,menstruationyes)             0.32      0.13     0.04     0.56        542 1.01
cor(menstruationpre,menstruationyes)     0.43      0.17     0.05     0.73        271 1.02

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            0.37      0.17     0.03     0.69        546 1.00
Intercept[2]                            0.80      0.17     0.46     1.12        544 1.00
Intercept[3]                            1.30      0.17     0.96     1.63        544 1.00
Intercept[4]                            2.37      0.17     2.03     2.69        548 1.00
Intercept[5]                            3.35      0.17     3.01     3.68        558 1.00
includedhorm_contra                     0.19      0.14    -0.08     0.46        360 1.01
menstruationpre                        -0.12      0.09    -0.29     0.04       1831 1.00
menstruationyes                        -0.10      0.08    -0.26     0.06       2033 1.00
fertile                                -0.03      0.18    -0.38     0.32       1915 1.00
fertile_mean                           -0.94      0.75    -2.50     0.41        789 1.00
includedhorm_contra:menstruationpre     0.08      0.10    -0.12     0.27       1961 1.00
includedhorm_contra:menstruationyes     0.08      0.10    -0.11     0.28       2193 1.00
includedhorm_contra:fertile             0.09      0.21    -0.32     0.50       2121 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

male_attention_1

Item text:

… hat mir mein Partner gezeigt, dass er sich von mir sexuell angezogen fühlt.

Item translation:

45. My partner showed me that he was sexually attracted to me.

Choices:

choice value frequency percent
1 Stimme nicht zu 7147 0.24
2 Stimme überwiegend nicht zu 2601 0.09
3 Stimme eher nicht zu 3986 0.13
4 Stimme eher zu 5240 0.18
5 Stimme überwiegend zu 4890 0.16
6 Stimme voll zu 6010 0.2

Model

Model summary

 Family: cumulative(logit) 
Formula: male_attention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26544) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 84166.42; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.38      0.04     1.30     1.47       1000 1.01
sd(fertile)                              1.65      0.11     1.43     1.87        824 1.01
sd(menstruationpre)                      0.73      0.06     0.61     0.85        711 1.01
sd(menstruationyes)                      0.71      0.06     0.60     0.82        818 1.00
cor(Intercept,fertile)                  -0.27      0.06    -0.39    -0.14       1741 1.01
cor(Intercept,menstruationpre)          -0.30      0.07    -0.43    -0.16       1782 1.01
cor(fertile,menstruationpre)             0.53      0.08     0.38     0.67        729 1.01
cor(Intercept,menstruationyes)          -0.32      0.07    -0.45    -0.19       1831 1.00
cor(fertile,menstruationyes)             0.40      0.09     0.22     0.56        655 1.00
cor(menstruationpre,menstruationyes)     0.51      0.09     0.33     0.67        693 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.43      0.12    -1.66    -1.20        839 1.01
Intercept[2]                           -0.85      0.12    -1.09    -0.63        842 1.01
Intercept[3]                           -0.10      0.12    -0.34     0.12        843 1.01
Intercept[4]                            0.81      0.12     0.58     1.04        851 1.00
Intercept[5]                            1.83      0.12     1.61     2.06        865 1.00
includedhorm_contra                     0.23      0.10     0.03     0.43        626 1.01
menstruationpre                        -0.05      0.07    -0.19     0.09       1539 1.00
menstruationyes                        -0.20      0.07    -0.33    -0.07       1487 1.00
fertile                                 0.15      0.15    -0.15     0.44       1573 1.00
fertile_mean                            0.09      0.50    -0.87     1.08       1613 1.00
includedhorm_contra:menstruationpre    -0.06      0.09    -0.25     0.11       1518 1.00
includedhorm_contra:menstruationyes    -0.03      0.09    -0.20     0.14       1594 1.00
includedhorm_contra:fertile            -0.48      0.19    -0.84    -0.12       1533 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

male_jealousy_1

Item text:

… hat mich mein Partner eifersüchtig gemacht.

Item translation:

34. My partner made me jealous.

Choices:

choice value frequency percent
1 Stimme nicht zu 24376 0.82
2 Stimme überwiegend nicht zu 2162 0.07
3 Stimme eher nicht zu 1432 0.05
4 Stimme eher zu 1209 0.04
5 Stimme überwiegend zu 429 0.01
6 Stimme voll zu 268 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: male_jealousy_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 33123.36; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.81      0.07     1.67     1.96       1100 1.00
sd(fertile)                              1.61      0.19     1.24     1.98        484 1.01
sd(menstruationpre)                      0.54      0.16     0.19     0.81        255 1.02
sd(menstruationyes)                      0.39      0.18     0.03     0.70        213 1.03
cor(Intercept,fertile)                  -0.24      0.10    -0.43    -0.03       3127 1.00
cor(Intercept,menstruationpre)           0.07      0.17    -0.25     0.42       2451 1.00
cor(fertile,menstruationpre)            -0.05      0.26    -0.64     0.37        367 1.01
cor(Intercept,menstruationyes)          -0.07      0.24    -0.58     0.46       3276 1.00
cor(fertile,menstruationyes)             0.04      0.30    -0.66     0.55        603 1.01
cor(menstruationpre,menstruationyes)     0.26      0.34    -0.56     0.81        453 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            2.62      0.16     2.32     2.94       1402    1
Intercept[2]                            3.42      0.16     3.11     3.74       1431    1
Intercept[3]                            4.17      0.16     3.87     4.50       1471    1
Intercept[4]                            5.36      0.17     5.04     5.70       1534    1
Intercept[5]                            6.41      0.17     6.07     6.76       1646    1
includedhorm_contra                     0.44      0.14     0.15     0.71        879    1
menstruationpre                        -0.09      0.13    -0.34     0.16       2315    1
menstruationyes                        -0.01      0.11    -0.23     0.20       2682    1
fertile                                 0.19      0.24    -0.29     0.66       3154    1
fertile_mean                            0.41      0.64    -0.84     1.73       2130    1
includedhorm_contra:menstruationpre     0.10      0.13    -0.15     0.35       4000    1
includedhorm_contra:menstruationyes     0.04      0.12    -0.18     0.27       4000    1
includedhorm_contra:fertile            -0.04      0.25    -0.52     0.47       4000    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

male_jealousy_2

Item text:

… hat mein Partner auf meinen Umgang mit anderen Männern eifersüchtig reagiert.

Item translation:

35. My partner was jealous of my contact with other men.

Choices:

choice value frequency percent
1 Stimme nicht zu 24805 0.83
2 Stimme überwiegend nicht zu 1817 0.06
3 Stimme eher nicht zu 1312 0.04
4 Stimme eher zu 1176 0.04
5 Stimme überwiegend zu 433 0.01
6 Stimme voll zu 334 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: male_jealousy_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26546) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 30431.82; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.99      0.08     1.84     2.17        738 1.00
sd(fertile)                              1.65      0.21     1.23     2.05        449 1.01
sd(menstruationpre)                      0.57      0.14     0.26     0.81        262 1.02
sd(menstruationyes)                      0.72      0.12     0.47     0.94        456 1.01
cor(Intercept,fertile)                  -0.17      0.11    -0.38     0.05       1551 1.00
cor(Intercept,menstruationpre)          -0.03      0.17    -0.34     0.32       1477 1.00
cor(fertile,menstruationpre)             0.28      0.21    -0.18     0.63        314 1.01
cor(Intercept,menstruationyes)           0.12      0.13    -0.15     0.39       1171 1.00
cor(fertile,menstruationyes)             0.46      0.15     0.11     0.72        439 1.01
cor(menstruationpre,menstruationyes)     0.77      0.14     0.46     0.96        451 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            2.46      0.18     2.11     2.82        836    1
Intercept[2]                            3.21      0.19     2.85     3.57        840    1
Intercept[3]                            3.95      0.19     3.59     4.33        845    1
Intercept[4]                            5.12      0.19     4.75     5.50        855    1
Intercept[5]                            6.07      0.19     5.69     6.45        889    1
includedhorm_contra                    -0.08      0.16    -0.40     0.23        686    1
menstruationpre                        -0.24      0.12    -0.47     0.01       1593    1
menstruationyes                        -0.49      0.13    -0.74    -0.23       1748    1
fertile                                 0.11      0.25    -0.37     0.58       1979    1
fertile_mean                            0.65      0.72    -0.64     2.14       1613    1
includedhorm_contra:menstruationpre     0.20      0.13    -0.06     0.47       2124    1
includedhorm_contra:menstruationyes     0.34      0.14     0.07     0.61       2381    1
includedhorm_contra:fertile            -0.11      0.27    -0.65     0.41       2138    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

male_jealousy_3

Item text:

… hat mir mein Partner erzählt, er habe Komplimente von anderen Frauen erhalten.

Item translation:

36. My partner told me he had received compliments from other women.

Choices:

choice value frequency percent
1 Stimme nicht zu 27378 0.92
2 Stimme überwiegend nicht zu 1128 0.04
3 Stimme eher nicht zu 600 0.02
4 Stimme eher zu 403 0.01
5 Stimme überwiegend zu 191 0.01
6 Stimme voll zu 176 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: male_jealousy_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 16673.68; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.05      0.09     1.87     2.22       1126 1.00
sd(fertile)                              0.63      0.34     0.05     1.31        302 1.02
sd(menstruationpre)                      0.41      0.22     0.03     0.84        465 1.01
sd(menstruationyes)                      0.16      0.12     0.01     0.44        824 1.00
cor(Intercept,fertile)                   0.28      0.29    -0.36     0.82       3245 1.00
cor(Intercept,menstruationpre)           0.11      0.28    -0.46     0.68       4000 1.00
cor(fertile,menstruationpre)             0.17      0.41    -0.68     0.82        435 1.01
cor(Intercept,menstruationyes)          -0.04      0.40    -0.78     0.73       4000 1.00
cor(fertile,menstruationyes)             0.00      0.45    -0.81     0.80       2353 1.00
cor(menstruationpre,menstruationyes)    -0.09      0.44    -0.85     0.75       2769 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            3.66      0.21     3.24     4.07       1992    1
Intercept[2]                            4.55      0.21     4.13     4.97       1998    1
Intercept[3]                            5.28      0.21     4.86     5.69       2024    1
Intercept[4]                            6.12      0.21     5.69     6.54       1774    1
Intercept[5]                            6.92      0.22     6.47     7.35       1758    1
includedhorm_contra                    -0.05      0.18    -0.40     0.30       1613    1
menstruationpre                        -0.12      0.18    -0.50     0.22       2054    1
menstruationyes                        -0.02      0.14    -0.30     0.26       4000    1
fertile                                -0.32      0.33    -1.01     0.28       1821    1
fertile_mean                           -0.44      0.82    -2.19     1.07       2427    1
includedhorm_contra:menstruationpre     0.07      0.16    -0.25     0.38       4000    1
includedhorm_contra:menstruationyes     0.14      0.15    -0.16     0.43       4000    1
includedhorm_contra:fertile            -0.26      0.30    -0.86     0.32       4000    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

male_mate_retention_1

Item text:

… hat mich mein Partner gefragt, mit wem ich den Tag verbracht habe.

Item translation:

43. My partner asked me with whom I spent the day.

Choices:

choice value frequency percent
1 Stimme nicht zu 17532 0.59
2 Stimme überwiegend nicht zu 1787 0.06
3 Stimme eher nicht zu 2043 0.07
4 Stimme eher zu 3564 0.12
5 Stimme überwiegend zu 2062 0.07
6 Stimme voll zu 2888 0.1

Model

Model summary

 Family: cumulative(logit) 
Formula: male_mate_retention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 56670.01; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.18      0.07     2.04     2.33        570 1.00
sd(fertile)                              1.68      0.15     1.36     1.97        635 1.00
sd(menstruationpre)                      0.66      0.08     0.48     0.82        343 1.01
sd(menstruationyes)                      0.71      0.08     0.55     0.85        680 1.00
cor(Intercept,fertile)                  -0.08      0.09    -0.25     0.10       2077 1.00
cor(Intercept,menstruationpre)           0.01      0.11    -0.20     0.24       1698 1.00
cor(fertile,menstruationpre)             0.16      0.15    -0.17     0.40        306 1.01
cor(Intercept,menstruationyes)          -0.15      0.10    -0.35     0.05       2010 1.00
cor(fertile,menstruationyes)             0.39      0.12     0.13     0.60        481 1.00
cor(menstruationpre,menstruationyes)     0.52      0.13     0.26     0.76        380 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            0.58      0.17     0.24     0.91        489 1.01
Intercept[2]                            1.00      0.17     0.66     1.33        491 1.01
Intercept[3]                            1.52      0.17     1.18     1.84        493 1.01
Intercept[4]                            2.61      0.17     2.27     2.94        494 1.01
Intercept[5]                            3.54      0.17     3.19     3.87        503 1.01
includedhorm_contra                     0.08      0.15    -0.23     0.37        358 1.00
menstruationpre                        -0.12      0.09    -0.29     0.05       1813 1.00
menstruationyes                        -0.08      0.09    -0.25     0.08       1904 1.00
fertile                                -0.10      0.19    -0.47     0.26       1871 1.00
fertile_mean                           -0.32      0.69    -1.81     0.97        819 1.00
includedhorm_contra:menstruationpre     0.16      0.10    -0.05     0.36       2033 1.00
includedhorm_contra:menstruationyes     0.09      0.10    -0.11     0.30       1930 1.00
includedhorm_contra:fertile             0.20      0.22    -0.24     0.63       1780 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

male_mate_retention_2

Item text:

… hat mir mein Partner gesagt, dass er mich liebt.

Item translation:

44. My partner told me he loved me.

Choices:

choice value frequency percent
1 Stimme nicht zu 7590 0.25
2 Stimme überwiegend nicht zu 1225 0.04
3 Stimme eher nicht zu 2136 0.07
4 Stimme eher zu 3458 0.12
5 Stimme überwiegend zu 3508 0.12
6 Stimme voll zu 11959 0.4

Model

Model summary

 Family: cumulative(logit) 
Formula: male_mate_retention_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 61332.65; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.66      0.08     2.50     2.82        608 1.00
sd(fertile)                              1.21      0.16     0.90     1.52        301 1.01
sd(menstruationpre)                      0.57      0.09     0.37     0.73        347 1.01
sd(menstruationyes)                      0.61      0.08     0.45     0.75        425 1.01
cor(Intercept,fertile)                   0.02      0.13    -0.22     0.26       2014 1.00
cor(Intercept,menstruationpre)           0.27      0.14     0.00     0.54        993 1.00
cor(fertile,menstruationpre)            -0.11      0.21    -0.57     0.26        186 1.01
cor(Intercept,menstruationyes)          -0.05      0.13    -0.30     0.19       2363 1.00
cor(fertile,menstruationyes)             0.37      0.15     0.03     0.64        170 1.01
cor(menstruationpre,menstruationyes)     0.43      0.16     0.08     0.71        311 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.84      0.20    -2.24    -1.46        140 1.02
Intercept[2]                           -1.46      0.20    -1.86    -1.09        139 1.02
Intercept[3]                           -0.86      0.20    -1.26    -0.49        139 1.02
Intercept[4]                            0.01      0.20    -0.38     0.39        138 1.02
Intercept[5]                            0.91      0.20     0.51     1.29        139 1.02
includedhorm_contra                     0.39      0.17     0.05     0.72        124 1.04
menstruationpre                         0.03      0.07    -0.11     0.18       1451 1.00
menstruationyes                         0.04      0.07    -0.11     0.18       1563 1.00
fertile                                 0.15      0.15    -0.14     0.44       2065 1.00
fertile_mean                           -0.43      0.80    -2.11     1.13        571 1.01
includedhorm_contra:menstruationpre    -0.03      0.10    -0.22     0.16       1529 1.00
includedhorm_contra:menstruationyes    -0.14      0.09    -0.32     0.05       1681 1.00
includedhorm_contra:fertile            -0.32      0.19    -0.69     0.05       1916 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

mate_retention_1

Item text:

Haben Sie die letzte Nacht mit Ihrem Partner verbracht?

Item translation:

3. Did you spend last night with your partner?

Choices:

choice value frequency percent
1 ja 16379 0.55
2 nein 13523 0.45

Model

Model summary

 Family: bernoulli(logit) 
Formula: mate_retention_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
   Data: diary (Number of observations: 26568) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 24630.06; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.15      0.08     1.99     2.32       1122 1.00
sd(fertile)                              2.09      0.19     1.73     2.45        676 1.00
sd(menstruationpre)                      1.08      0.09     0.89     1.25        757 1.00
sd(menstruationyes)                      1.15      0.11     0.95     1.37       1265 1.00
cor(Intercept,fertile)                   0.01      0.10    -0.19     0.20       2131 1.00
cor(Intercept,menstruationpre)          -0.13      0.10    -0.32     0.07       2032 1.00
cor(fertile,menstruationpre)             0.26      0.10     0.05     0.44        537 1.00
cor(Intercept,menstruationyes)           0.30      0.09     0.11     0.48       1701 1.00
cor(fertile,menstruationyes)             0.21      0.10     0.00     0.40        631 1.01
cor(menstruationpre,menstruationyes)     0.52      0.08     0.35     0.67        980 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept                              -0.64      0.17    -0.97    -0.28        773    1
includedhorm_contra                     0.34      0.16     0.03     0.65        611    1
menstruationpre                        -0.01      0.11    -0.24     0.21       1823    1
menstruationyes                        -0.11      0.12    -0.34     0.12       1817    1
fertile                                 0.24      0.22    -0.16     0.66       2280    1
fertile_mean                           -0.36      0.72    -1.88     0.99       1501    1
includedhorm_contra:menstruationpre     0.16      0.14    -0.10     0.44       1843    1
includedhorm_contra:menstruationyes     0.27      0.14    -0.01     0.55       1925    1
includedhorm_contra:fertile             0.13      0.26    -0.39     0.65       2226    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

mate_retention_2

Item text:

Haben Sie seit Ihrem letzten Eintrag öffentlich Intimitäten (z.B. Händchenhalten, Küssen, in den Arm nehmen) ausgetauscht?

Item translation:

5. Did you display any forms of public affection (e.g. holding hands, kissing, hugging) with your partner?

Choices:

choice value frequency percent
0 NA 15931 0.53
1 ja (1x) 2720 0.09
2 ja (mehrfach) 11251 0.38

Model

Model summary

 Family: cumulative(logit) 
Formula: mate_retention_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26568) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 42813.55; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.24      0.05     1.14     1.35       1350 1.00
sd(fertile)                              1.73      0.14     1.45     2.01        670 1.00
sd(menstruationpre)                      0.81      0.07     0.67     0.95        703 1.01
sd(menstruationyes)                      0.95      0.07     0.80     1.09        994 1.00
cor(Intercept,fertile)                  -0.28      0.08    -0.43    -0.12       1886 1.00
cor(Intercept,menstruationpre)          -0.29      0.08    -0.44    -0.12       1807 1.00
cor(fertile,menstruationpre)             0.20      0.11    -0.03     0.39        619 1.00
cor(Intercept,menstruationyes)           0.07      0.09    -0.09     0.23       1148 1.00
cor(fertile,menstruationyes)             0.18      0.10    -0.02     0.37        598 1.00
cor(menstruationpre,menstruationyes)     0.39      0.09     0.21     0.57        584 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            0.19      0.11    -0.04     0.42       1436    1
Intercept[2]                            0.65      0.11     0.43     0.89       1445    1
includedhorm_contra                     0.07      0.10    -0.12     0.27        973    1
menstruationpre                        -0.04      0.08    -0.20     0.12       2100    1
menstruationyes                        -0.01      0.08    -0.17     0.16       2047    1
fertile                                -0.21      0.16    -0.52     0.11       2124    1
fertile_mean                            0.23      0.49    -0.71     1.19       2064    1
includedhorm_contra:menstruationpre    -0.07      0.10    -0.27     0.13       2164    1
includedhorm_contra:menstruationyes    -0.20      0.11    -0.41     0.01       2188    1
includedhorm_contra:fertile            -0.30      0.21    -0.70     0.11       2017    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

mate_retention_3

Item text:

… habe ich mich für meinen Partner besonders hübsch gemacht.

Item translation:

37. I made myself up especially for my partner.

Choices:

choice value frequency percent
1 Stimme nicht zu 10603 0.35
2 Stimme überwiegend nicht zu 2841 0.1
3 Stimme eher nicht zu 4843 0.16
4 Stimme eher zu 5519 0.18
5 Stimme überwiegend zu 3674 0.12
6 Stimme voll zu 2396 0.08

Model

Model summary

 Family: cumulative(logit) 
Formula: mate_retention_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 78990.97; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.42      0.05     1.34     1.52       1201 1.00
sd(fertile)                              1.67      0.12     1.44     1.91        592 1.00
sd(menstruationpre)                      0.61      0.07     0.48     0.74        747 1.00
sd(menstruationyes)                      0.78      0.06     0.66     0.90        651 1.00
cor(Intercept,fertile)                  -0.26      0.06    -0.38    -0.13       1727 1.00
cor(Intercept,menstruationpre)          -0.25      0.08    -0.41    -0.08       2122 1.00
cor(fertile,menstruationpre)             0.38      0.10     0.17     0.56        825 1.00
cor(Intercept,menstruationyes)          -0.19      0.07    -0.33    -0.05       1996 1.00
cor(fertile,menstruationyes)             0.48      0.08     0.31     0.63        676 1.01
cor(menstruationpre,menstruationyes)     0.46      0.10     0.25     0.66        463 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -0.61      0.13    -0.87    -0.37        775    1
Intercept[2]                           -0.06      0.13    -0.32     0.19        771    1
Intercept[3]                            0.81      0.13     0.56     1.06        772    1
Intercept[4]                            1.95      0.13     1.69     2.20        773    1
Intercept[5]                            3.20      0.13     2.94     3.45        799    1
includedhorm_contra                     0.22      0.11     0.00     0.44        655    1
menstruationpre                        -0.06      0.07    -0.20     0.08       2169    1
menstruationyes                        -0.14      0.07    -0.28     0.01       1603    1
fertile                                 0.03      0.15    -0.27     0.33       1435    1
fertile_mean                           -0.11      0.52    -1.17     0.89       1469    1
includedhorm_contra:menstruationpre     0.02      0.09    -0.16     0.19       1812    1
includedhorm_contra:menstruationyes     0.09      0.09    -0.08     0.28       1485    1
includedhorm_contra:fertile            -0.27      0.19    -0.65     0.09       1449    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

mate_retention_4

Item text:

… habe ich meinem Partner gesagt, dass ich ihn liebe.

Item translation:

38. I told my partner I love him.

Choices:

choice value frequency percent
1 Stimme nicht zu 7577 0.25
2 Stimme überwiegend nicht zu 1239 0.04
3 Stimme eher nicht zu 2205 0.07
4 Stimme eher zu 3522 0.12
5 Stimme überwiegend zu 3550 0.12
6 Stimme voll zu 11783 0.39

Model

Model summary

 Family: cumulative(logit) 
Formula: mate_retention_4 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 61074.44; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.73      0.09     2.57     2.90        488 1.01
sd(fertile)                              1.01      0.17     0.67     1.32        167 1.03
sd(menstruationpre)                      0.59      0.08     0.42     0.75        346 1.01
sd(menstruationyes)                      0.58      0.08     0.42     0.73        425 1.01
cor(Intercept,fertile)                   0.00      0.15    -0.28     0.29       2702 1.00
cor(Intercept,menstruationpre)           0.26      0.13    -0.01     0.51       1115 1.01
cor(fertile,menstruationpre)            -0.43      0.23    -0.86     0.00        113 1.04
cor(Intercept,menstruationyes)           0.03      0.13    -0.22     0.29       2369 1.00
cor(fertile,menstruationyes)             0.18      0.18    -0.20     0.53        184 1.03
cor(menstruationpre,menstruationyes)     0.33      0.15     0.02     0.61        336 1.02

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.93      0.19    -2.32    -1.57        278 1.02
Intercept[2]                           -1.55      0.19    -1.93    -1.19        279 1.02
Intercept[3]                           -0.92      0.19    -1.30    -0.56        280 1.02
Intercept[4]                           -0.01      0.19    -0.39     0.35        280 1.02
Intercept[5]                            0.92      0.19     0.54     1.28        282 1.02
includedhorm_contra                     0.31      0.17    -0.04     0.63        196 1.01
menstruationpre                         0.06      0.08    -0.09     0.21       2268 1.00
menstruationyes                         0.05      0.07    -0.08     0.19       2241 1.00
fertile                                 0.13      0.14    -0.14     0.41       2141 1.00
fertile_mean                           -0.57      0.81    -2.30     0.93        529 1.01
includedhorm_contra:menstruationpre    -0.01      0.10    -0.20     0.19       2131 1.00
includedhorm_contra:menstruationyes    -0.12      0.09    -0.30     0.06       2198 1.00
includedhorm_contra:fertile            -0.33      0.18    -0.69     0.00       2207 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

mate_retention_5

Item text:

… habe ich vor meinem Partner über andere Frauen gelästert.

Item translation:


Choices:

choice value frequency percent
1 Stimme nicht zu 22085 0.74
2 Stimme überwiegend nicht zu 2475 0.08
3 Stimme eher nicht zu 1817 0.06
4 Stimme eher zu 2071 0.07
5 Stimme überwiegend zu 824 0.03
6 Stimme voll zu 604 0.02

Model

Model summary

 Family: cumulative(logit) 
Formula: mate_retention_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 44539.06; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.57      0.06     1.46     1.69       1368 1.00
sd(fertile)                              1.37      0.19     0.98     1.73        415 1.00
sd(menstruationpre)                      0.55      0.13     0.17     0.76         91 1.04
sd(menstruationyes)                      0.78      0.09     0.61     0.94        537 1.00
cor(Intercept,fertile)                  -0.09      0.11    -0.30     0.14       2121 1.00
cor(Intercept,menstruationpre)           0.02      0.16    -0.26     0.39        241 1.02
cor(fertile,menstruationpre)             0.32      0.21    -0.17     0.66        238 1.01
cor(Intercept,menstruationyes)          -0.10      0.10    -0.29     0.10       1536 1.00
cor(fertile,menstruationyes)             0.12      0.16    -0.23     0.41        395 1.01
cor(menstruationpre,menstruationyes)     0.07      0.23    -0.58     0.43        125 1.04

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            1.53      0.14     1.27     1.80       1800    1
Intercept[2]                            2.21      0.14     1.94     2.48       1806    1
Intercept[3]                            2.83      0.14     2.56     3.11       1831    1
Intercept[4]                            3.98      0.14     3.70     4.25       1893    1
Intercept[5]                            4.98      0.15     4.70     5.27       1962    1
includedhorm_contra                     0.15      0.12    -0.08     0.39       1223    1
menstruationpre                        -0.13      0.10    -0.33     0.05       3203    1
menstruationyes                        -0.14      0.10    -0.33     0.06       3056    1
fertile                                -0.18      0.20    -0.56     0.20       2915    1
fertile_mean                            0.43      0.59    -0.67     1.65       2333    1
includedhorm_contra:menstruationpre    -0.05      0.11    -0.26     0.16       4000    1
includedhorm_contra:menstruationyes     0.01      0.11    -0.21     0.24       3093    1
includedhorm_contra:fertile            -0.15      0.22    -0.60     0.26       2861    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

mate_retention_6

Item text:

… war ich in Bezug auf meinen Partner sehr anhänglich.

Item translation:

40. I was very attached to my partner.

Choices:

choice value frequency percent
1 Stimme nicht zu 9646 0.32
2 Stimme überwiegend nicht zu 3944 0.13
3 Stimme eher nicht zu 5689 0.19
4 Stimme eher zu 6026 0.2
5 Stimme überwiegend zu 2967 0.1
6 Stimme voll zu 1603 0.05

Model

Model summary

 Family: cumulative(logit) 
Formula: mate_retention_6 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 74481.1; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.72      0.05     1.62     1.82        775 1.01
sd(fertile)                              1.55      0.12     1.30     1.79        463 1.01
sd(menstruationpre)                      0.74      0.06     0.61     0.86        666 1.00
sd(menstruationyes)                      0.77      0.06     0.65     0.89        771 1.01
cor(Intercept,fertile)                  -0.08      0.07    -0.21     0.06       2119 1.00
cor(Intercept,menstruationpre)          -0.02      0.08    -0.17     0.13       1992 1.00
cor(fertile,menstruationpre)             0.33      0.09     0.13     0.50        609 1.00
cor(Intercept,menstruationyes)          -0.10      0.07    -0.23     0.04       1979 1.00
cor(fertile,menstruationyes)             0.24      0.10     0.04     0.42        519 1.00
cor(menstruationpre,menstruationyes)     0.53      0.09     0.34     0.69        438 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.00      0.14    -1.28    -0.74        494 1.01
Intercept[2]                           -0.14      0.14    -0.42     0.12        489 1.01
Intercept[3]                            1.02      0.14     0.73     1.28        517 1.01
Intercept[4]                            2.59      0.14     2.31     2.86        519 1.01
Intercept[5]                            4.12      0.14     3.84     4.39        537 1.01
includedhorm_contra                     0.39      0.12     0.15     0.62        374 1.00
menstruationpre                        -0.05      0.07    -0.20     0.09       2052 1.00
menstruationyes                         0.15      0.07     0.01     0.29       1746 1.00
fertile                                -0.05      0.15    -0.35     0.24       1819 1.00
fertile_mean                           -0.49      0.60    -1.69     0.64       1026 1.01
includedhorm_contra:menstruationpre    -0.06      0.09    -0.23     0.13       1826 1.00
includedhorm_contra:menstruationyes    -0.09      0.09    -0.28     0.09       1747 1.00
includedhorm_contra:fertile            -0.35      0.19    -0.72     0.02       1806 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

NARQ_admiration_1

Item text:

…hatte ich das Gefühl es verdient zu haben, als große Persönlichkeit angesehen zu werden.

Item translation:

27. I deserved to be seen as a great personality.

Choices:

choice value frequency percent
1 Stimme nicht zu 10545 0.35
2 Stimme überwiegend nicht zu 4120 0.14
3 Stimme eher nicht zu 6077 0.2
4 Stimme eher zu 6020 0.2
5 Stimme überwiegend zu 2289 0.08
6 Stimme voll zu 826 0.03

Model

Model summary

 Family: cumulative(logit) 
Formula: NARQ_admiration_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26546) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 54982.3; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            3.30      0.09     3.13     3.48        443 1.01
sd(fertile)                              1.81      0.13     1.56     2.07        580 1.00
sd(menstruationpre)                      0.64      0.07     0.49     0.78        438 1.01
sd(menstruationyes)                      0.78      0.06     0.65     0.90        515 1.01
cor(Intercept,fertile)                  -0.11      0.08    -0.26     0.03       2161 1.00
cor(Intercept,menstruationpre)          -0.18      0.10    -0.37     0.01       2096 1.00
cor(fertile,menstruationpre)             0.10      0.12    -0.17     0.32        387 1.01
cor(Intercept,menstruationyes)          -0.27      0.08    -0.43    -0.11       1883 1.00
cor(fertile,menstruationyes)             0.16      0.11    -0.06     0.36        365 1.00
cor(menstruationpre,menstruationyes)     0.54      0.11     0.31     0.75        282 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.32      0.24    -1.76    -0.84        121 1.04
Intercept[2]                            0.16      0.24    -0.29     0.64        121 1.04
Intercept[3]                            2.11      0.24     1.66     2.60        121 1.04
Intercept[4]                            4.55      0.24     4.10     5.04        122 1.04
Intercept[5]                            6.70      0.24     6.25     7.20        125 1.04
includedhorm_contra                    -0.30      0.23    -0.73     0.14         77 1.06
menstruationpre                        -0.04      0.08    -0.19     0.11       1690 1.00
menstruationyes                        -0.18      0.08    -0.34    -0.03       1509 1.00
fertile                                 0.10      0.17    -0.24     0.44       1418 1.00
fertile_mean                            0.72      0.90    -0.91     2.67        532 1.00
includedhorm_contra:menstruationpre     0.04      0.10    -0.14     0.23       1714 1.00
includedhorm_contra:menstruationyes     0.17      0.10    -0.03     0.38       1435 1.00
includedhorm_contra:fertile            -0.24      0.22    -0.68     0.17       1482 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

NARQ_admiration_2

Item text:

… habe ich viel Kraft daraus gezogen, eine ganz besondere Person zu sein.

Item translation:

28. Being a very special person gave me a lot of strength.

Choices:

choice value frequency percent
1 Stimme nicht zu 10803 0.36
2 Stimme überwiegend nicht zu 3991 0.13
3 Stimme eher nicht zu 5827 0.2
4 Stimme eher zu 6000 0.2
5 Stimme überwiegend zu 2397 0.08
6 Stimme voll zu 859 0.03

Model

Model summary

 Family: cumulative(logit) 
Formula: NARQ_admiration_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26546) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 56131.73; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            3.20      0.09     3.04     3.39        490 1.00
sd(fertile)                              1.75      0.13     1.49     2.02        523 1.01
sd(menstruationpre)                      0.64      0.08     0.47     0.79        363 1.01
sd(menstruationyes)                      0.81      0.06     0.68     0.93        708 1.00
cor(Intercept,fertile)                  -0.04      0.08    -0.19     0.12       2122 1.00
cor(Intercept,menstruationpre)          -0.25      0.10    -0.43    -0.05       2597 1.00
cor(fertile,menstruationpre)             0.14      0.13    -0.14     0.37        382 1.01
cor(Intercept,menstruationyes)          -0.27      0.08    -0.42    -0.12       2360 1.00
cor(fertile,menstruationyes)             0.21      0.10     0.00     0.39        555 1.00
cor(menstruationpre,menstruationyes)     0.56      0.10     0.36     0.76        329 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -1.35      0.21    -1.75    -0.93        315 1.01
Intercept[2]                            0.07      0.21    -0.34     0.48        312 1.01
Intercept[3]                            1.87      0.21     1.47     2.28        315 1.01
Intercept[4]                            4.15      0.21     3.74     4.56        321 1.01
Intercept[5]                            6.24      0.21     5.84     6.66        338 1.01
includedhorm_contra                    -0.41      0.20    -0.81    -0.03        178 1.01
menstruationpre                        -0.13      0.08    -0.28     0.02       1846 1.00
menstruationyes                        -0.25      0.08    -0.41    -0.10       2182 1.00
fertile                                -0.15      0.17    -0.49     0.18       1597 1.00
fertile_mean                            0.26      0.77    -1.22     1.82        712 1.01
includedhorm_contra:menstruationpre     0.21      0.10     0.02     0.40       2145 1.00
includedhorm_contra:menstruationyes     0.29      0.10     0.10     0.49       2328 1.00
includedhorm_contra:fertile             0.01      0.20    -0.39     0.42       1724 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

NARQ_admiration_3

Item text:

… habe ich es geschafft, mit meinen besonderen Beiträgen im Mittelpunkt zu stehen.

Item translation:

29. I managed to be the center of attention with my outstanding contributions

Choices:

choice value frequency percent
1 Stimme nicht zu 11050 0.37
2 Stimme überwiegend nicht zu 3939 0.13
3 Stimme eher nicht zu 5601 0.19
4 Stimme eher zu 5852 0.2
5 Stimme überwiegend zu 2510 0.08
6 Stimme voll zu 925 0.03

Model

Model summary

 Family: cumulative(logit) 
Formula: NARQ_admiration_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26546) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 64972.74; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.32      0.07     2.19     2.46        532 1.00
sd(fertile)                              1.47      0.13     1.21     1.73        575 1.00
sd(menstruationpre)                      0.55      0.08     0.37     0.70        379 1.00
sd(menstruationyes)                      0.72      0.07     0.59     0.85        564 1.00
cor(Intercept,fertile)                  -0.17      0.08    -0.33    -0.01       2093 1.00
cor(Intercept,menstruationpre)          -0.28      0.10    -0.47    -0.09       1991 1.00
cor(fertile,menstruationpre)             0.22      0.15    -0.11     0.48        332 1.00
cor(Intercept,menstruationyes)          -0.25      0.08    -0.40    -0.09       1857 1.00
cor(fertile,menstruationyes)             0.33      0.11     0.10     0.54        312 1.01
cor(menstruationpre,menstruationyes)     0.69      0.11     0.46     0.88        143 1.02

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -0.87      0.17    -1.19    -0.54        316 1.01
Intercept[2]                            0.19      0.17    -0.13     0.52        317 1.01
Intercept[3]                            1.54      0.17     1.22     1.87        316 1.01
Intercept[4]                            3.35      0.17     3.03     3.68        316 1.01
Intercept[5]                            5.08      0.17     4.75     5.42        332 1.01
includedhorm_contra                    -0.21      0.15    -0.51     0.09        232 1.01
menstruationpre                        -0.07      0.07    -0.21     0.06       1780 1.00
menstruationyes                        -0.16      0.07    -0.31    -0.03       1460 1.00
fertile                                 0.02      0.15    -0.28     0.32       1919 1.00
fertile_mean                            0.26      0.67    -1.03     1.69        613 1.00
includedhorm_contra:menstruationpre     0.03      0.09    -0.14     0.21       1982 1.00
includedhorm_contra:menstruationyes     0.14      0.09    -0.04     0.31       1755 1.00
includedhorm_contra:fertile            -0.09      0.18    -0.45     0.28       1971 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

NARQ_rivalry_1

Item text:

… habe ich genervt reagiert, wenn eine andere Frau mir die Schau gestohlen hat.

Item translation:

30. I reacted annoyed when another woman stole the show from me.

Choices:

choice value frequency percent
1 Stimme nicht zu 24605 0.82
2 Stimme überwiegend nicht zu 2457 0.08
3 Stimme eher nicht zu 1357 0.05
4 Stimme eher zu 960 0.03
5 Stimme überwiegend zu 276 0.01
6 Stimme voll zu 221 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: NARQ_rivalry_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 29128.25; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.07      0.08     1.92     2.22        730 1.01
sd(fertile)                              1.15      0.22     0.72     1.58        520 1.01
sd(menstruationpre)                      0.26      0.14     0.01     0.52        337 1.01
sd(menstruationyes)                      0.28      0.14     0.02     0.55        523 1.01
cor(Intercept,fertile)                  -0.32      0.13    -0.57    -0.06       4000 1.00
cor(Intercept,menstruationpre)          -0.02      0.30    -0.62     0.58       4000 1.00
cor(fertile,menstruationpre)            -0.29      0.36    -0.87     0.51       1061 1.01
cor(Intercept,menstruationyes)           0.04      0.28    -0.57     0.62       4000 1.00
cor(fertile,menstruationyes)             0.38      0.33    -0.38     0.88        873 1.00
cor(menstruationpre,menstruationyes)    -0.29      0.40    -0.90     0.60        960 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            2.40      0.17     2.06     2.75       1413    1
Intercept[2]                            3.49      0.18     3.15     3.84       1421    1
Intercept[3]                            4.42      0.18     4.08     4.78       1445    1
Intercept[4]                            5.75      0.18     5.40     6.12       1527    1
Intercept[5]                            6.70      0.19     6.32     7.08       1631    1
includedhorm_contra                     0.10      0.16    -0.21     0.41       1099    1
menstruationpre                        -0.18      0.11    -0.40     0.04       4000    1
menstruationyes                        -0.08      0.11    -0.29     0.12       4000    1
fertile                                 0.09      0.23    -0.36     0.53       4000    1
fertile_mean                           -0.20      0.69    -1.59     1.15       2406    1
includedhorm_contra:menstruationpre     0.19      0.12    -0.05     0.42       4000    1
includedhorm_contra:menstruationyes    -0.01      0.12    -0.23     0.21       4000    1
includedhorm_contra:fertile             0.00      0.25    -0.49     0.49       4000    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

NARQ_rivalry_2

Item text:

… wollte ich, dass meine Konkurrentinnen sich blamieren oder ignoriert werden.

Item translation:

31. I wanted my female rivals to fail.

Choices:

choice value frequency percent
1 Stimme nicht zu 25617 0.86
2 Stimme überwiegend nicht zu 1753 0.06
3 Stimme eher nicht zu 960 0.03
4 Stimme eher zu 894 0.03
5 Stimme überwiegend zu 321 0.01
6 Stimme voll zu 332 0.01

Model

Model summary

 Family: cumulative(logit) 
Formula: NARQ_rivalry_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26546) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 24128.93; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.39      0.10     2.20     2.58        664 1.01
sd(fertile)                              1.77      0.22     1.33     2.21        518 1.00
sd(menstruationpre)                      0.28      0.17     0.02     0.62        272 1.01
sd(menstruationyes)                      0.63      0.16     0.24     0.92        295 1.01
cor(Intercept,fertile)                  -0.17      0.12    -0.39     0.07       2604 1.00
cor(Intercept,menstruationpre)           0.04      0.33    -0.64     0.66       2725 1.00
cor(fertile,menstruationpre)            -0.23      0.36    -0.86     0.51        561 1.00
cor(Intercept,menstruationyes)          -0.09      0.18    -0.43     0.26       1327 1.00
cor(fertile,menstruationyes)             0.01      0.22    -0.47     0.39        395 1.00
cor(menstruationpre,menstruationyes)     0.27      0.40    -0.65     0.86        100 1.04

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            3.21      0.21     2.82     3.63        832 1.00
Intercept[2]                            4.13      0.21     3.75     4.55        845 1.00
Intercept[3]                            4.88      0.21     4.48     5.29        862 1.00
Intercept[4]                            6.10      0.21     5.69     6.52        876 1.00
Intercept[5]                            7.03      0.22     6.62     7.46        938 1.00
includedhorm_contra                     0.27      0.19    -0.10     0.65        576 1.01
menstruationpre                        -0.24      0.14    -0.52     0.02       2313 1.00
menstruationyes                        -0.14      0.15    -0.44     0.15       1352 1.00
fertile                                -0.27      0.30    -0.87     0.32       2067 1.00
fertile_mean                            0.43      0.78    -1.05     2.06       1430 1.00
includedhorm_contra:menstruationpre     0.11      0.14    -0.16     0.39       2686 1.00
includedhorm_contra:menstruationyes     0.04      0.15    -0.24     0.33       2575 1.00
includedhorm_contra:fertile            -0.03      0.30    -0.61     0.55       2479 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

NARQ_rivalry_3

Item text:

… hatte ich das Gefühl, dass die meisten Frauen ziemliche Versagerinnen sind.

Item translation:

32. I had the feeling that most women are somehow losers.

Choices:

choice value frequency percent
1 Stimme nicht zu 26119 0.87
2 Stimme überwiegend nicht zu 1829 0.06
3 Stimme eher nicht zu 1012 0.03
4 Stimme eher zu 611 0.02
5 Stimme überwiegend zu 202 0.01
6 Stimme voll zu 103 0

Model

Model summary

 Family: cumulative(logit) 
Formula: NARQ_rivalry_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26545) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 19471.11; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            2.76      0.12     2.54     3.00        854 1.00
sd(fertile)                              1.39      0.24     0.91     1.87        790 1.01
sd(menstruationpre)                      0.48      0.14     0.19     0.75        529 1.00
sd(menstruationyes)                      0.38      0.21     0.02     0.76        268 1.01
cor(Intercept,fertile)                  -0.07      0.16    -0.39     0.25       4000 1.00
cor(Intercept,menstruationpre)           0.00      0.23    -0.48     0.46       2556 1.00
cor(fertile,menstruationpre)            -0.58      0.24    -0.94    -0.02        680 1.00
cor(Intercept,menstruationyes)          -0.08      0.29    -0.66     0.52       4000 1.00
cor(fertile,menstruationyes)             0.14      0.34    -0.60     0.73       1020 1.00
cor(menstruationpre,menstruationyes)     0.11      0.38    -0.69     0.75        711 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            3.74      0.24     3.26     4.21        786    1
Intercept[2]                            4.96      0.24     4.49     5.44        800    1
Intercept[3]                            6.09      0.25     5.60     6.56        817    1
Intercept[4]                            7.60      0.25     7.10     8.10        850    1
Intercept[5]                            8.91      0.27     8.37     9.45        930    1
includedhorm_contra                     0.27      0.22    -0.16     0.70        698    1
menstruationpre                        -0.09      0.17    -0.42     0.23       3101    1
menstruationyes                         0.18      0.15    -0.13     0.47       2417    1
fertile                                -0.16      0.33    -0.81     0.48       2999    1
fertile_mean                           -0.20      0.86    -2.00     1.44       1895    1
includedhorm_contra:menstruationpre     0.09      0.16    -0.21     0.39       4000    1
includedhorm_contra:menstruationyes    -0.17      0.14    -0.45     0.11       4000    1
includedhorm_contra:fertile            -0.15      0.31    -0.76     0.47       4000    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

relationship_satisfaction_1

Item text:

Wie zufrieden waren Sie insgesamt seit Ihrem letzten Eintrag mit Ihrer Beziehung?

Item translation:

4. How satisfied were you with your relationship?

Choices:

choice value frequency percent
1 Nicht zufrieden 707 0.02
2 Überwiegend nicht zufrieden 880 0.03
3 Eher nicht zufrieden 2189 0.07
4 Eher zufrieden 6476 0.22
5 Überwiegend zufrieden 9008 0.3
6 Sehr zufrieden 10642 0.36

Model

Model summary

 Family: cumulative(logit) 
Formula: relationship_satisfaction_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26568) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 69728.82; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.79      0.05     1.68     1.90        651 1.00
sd(fertile)                              1.94      0.12     1.71     2.18        843 1.00
sd(menstruationpre)                      0.97      0.06     0.85     1.09        664 1.00
sd(menstruationyes)                      0.97      0.06     0.85     1.08        870 1.01
cor(Intercept,fertile)                  -0.25      0.06    -0.36    -0.14       1573 1.00
cor(Intercept,menstruationpre)          -0.11      0.07    -0.23     0.02       1503 1.00
cor(fertile,menstruationpre)             0.38      0.07     0.24     0.51        615 1.00
cor(Intercept,menstruationyes)          -0.13      0.06    -0.25     0.00       1371 1.00
cor(fertile,menstruationyes)             0.33      0.08     0.18     0.47        591 1.01
cor(menstruationpre,menstruationyes)     0.40      0.07     0.25     0.53        568 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -4.97      0.15    -5.28    -4.69        720 1.00
Intercept[2]                           -3.89      0.14    -4.17    -3.61        685 1.00
Intercept[3]                           -2.60      0.14    -2.88    -2.32        664 1.00
Intercept[4]                           -1.09      0.14    -1.38    -0.82        658 1.00
Intercept[5]                           -0.77      0.14    -1.05    -0.50        657 1.00
Intercept[6]                            1.08      0.14     0.80     1.35        654 1.00
includedhorm_contra                     0.35      0.12     0.11     0.59        423 1.01
menstruationpre                         0.08      0.08    -0.07     0.24       1493 1.00
menstruationyes                         0.08      0.08    -0.07     0.23       1534 1.00
fertile                                 0.02      0.16    -0.29     0.33       1591 1.00
fertile_mean                           -0.51      0.60    -1.72     0.66       1292 1.00
includedhorm_contra:menstruationpre    -0.09      0.10    -0.29     0.10       1493 1.00
includedhorm_contra:menstruationyes     0.02      0.10    -0.18     0.22       1532 1.00
includedhorm_contra:fertile            -0.23      0.20    -0.63     0.16       1499 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

self_esteem_1

Item text:

… war ich im Großen und Ganzen zufrieden mit mir selbst.

Item translation:

24. On the whole, I was satisfied with myself (based on Rosenberg, 1965).

Choices:

choice value frequency percent
1 Stimme nicht zu 1115 0.04
2 Stimme überwiegend nicht zu 1290 0.04
3 Stimme eher nicht zu 3612 0.12
4 Stimme eher zu 9965 0.33
5 Stimme überwiegend zu 9971 0.33
6 Stimme voll zu 3928 0.13

Model

Model summary

 Family: cumulative(logit) 
Formula: self_esteem_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26549) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 64765.31; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.92      0.05     1.82     2.03        640    1
sd(fertile)                              1.80      0.11     1.58     2.02        967    1
sd(menstruationpre)                      0.71      0.06     0.59     0.83        754    1
sd(menstruationyes)                      0.68      0.06     0.56     0.80        862    1
cor(Intercept,fertile)                  -0.32      0.05    -0.42    -0.21       2181    1
cor(Intercept,menstruationpre)          -0.31      0.06    -0.42    -0.18       2704    1
cor(fertile,menstruationpre)             0.40      0.08     0.23     0.56        750    1
cor(Intercept,menstruationyes)          -0.21      0.07    -0.34    -0.07       2485    1
cor(fertile,menstruationyes)             0.29      0.09     0.10     0.46        800    1
cor(menstruationpre,menstruationyes)     0.59      0.09     0.40     0.76        513    1

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -4.80      0.15    -5.10    -4.51        671 1.00
Intercept[2]                           -3.63      0.14    -3.91    -3.35        636 1.00
Intercept[3]                           -2.15      0.14    -2.44    -1.87        630 1.00
Intercept[4]                            0.11      0.14    -0.18     0.38        620 1.00
Intercept[5]                            2.79      0.14     2.50     3.06        622 1.00
includedhorm_contra                    -0.08      0.13    -0.34     0.15        356 1.02
menstruationpre                        -0.13      0.07    -0.26     0.01       1854 1.00
menstruationyes                        -0.24      0.07    -0.37    -0.11       2082 1.00
fertile                                -0.12      0.15    -0.41     0.19       1836 1.00
fertile_mean                           -0.22      0.59    -1.38     0.90       1166 1.00
includedhorm_contra:menstruationpre     0.10      0.09    -0.08     0.28       1868 1.00
includedhorm_contra:menstruationyes     0.22      0.09     0.04     0.40       1857 1.00
includedhorm_contra:fertile             0.21      0.19    -0.18     0.59       1763 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

sexual_intercourse_1

Item text:

Wie sehr hatten Sie seit Ihrem letzten Eintrag Lust, mit Ihrem Partner Geschlechtsverkehr zu haben?

Item translation:

6. How much were you in the mood to have sex with your partner?

Choices:

choice value frequency percent
1 gar nicht 3780 0.13
2 kaum 5133 0.17
3 etwas 9262 0.31
4 viel 7492 0.25
5 sehr viel 4235 0.14

Model

Model summary

 Family: cumulative(logit) 
Formula: sexual_intercourse_1 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26568) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 70553.56; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.58      0.05     1.49     1.68        848 1.00
sd(fertile)                              1.80      0.11     1.59     2.02        862 1.01
sd(menstruationpre)                      0.83      0.06     0.71     0.94        758 1.00
sd(menstruationyes)                      0.95      0.06     0.85     1.06        744 1.00
cor(Intercept,fertile)                  -0.26      0.06    -0.37    -0.14       1784 1.00
cor(Intercept,menstruationpre)          -0.13      0.07    -0.25     0.00       1702 1.00
cor(fertile,menstruationpre)             0.31      0.08     0.15     0.45        690 1.01
cor(Intercept,menstruationyes)          -0.18      0.06    -0.29    -0.06       1422 1.00
cor(fertile,menstruationyes)             0.20      0.08     0.04     0.35        589 1.01
cor(menstruationpre,menstruationyes)     0.13      0.08    -0.04     0.28        489 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -2.34      0.13    -2.58    -2.09        835 1.00
Intercept[2]                           -0.83      0.13    -1.08    -0.58        834 1.00
Intercept[3]                            0.99      0.13     0.74     1.24        844 1.00
Intercept[4]                            2.82      0.13     2.58     3.08        859 1.00
includedhorm_contra                     0.63      0.11     0.41     0.85        527 1.01
menstruationpre                        -0.15      0.07    -0.29     0.00       1773 1.00
menstruationyes                        -0.43      0.08    -0.58    -0.27       1626 1.00
fertile                                 0.57      0.15     0.26     0.87       1663 1.00
fertile_mean                            0.27      0.55    -0.77     1.33       1091 1.00
includedhorm_contra:menstruationpre     0.01      0.10    -0.18     0.20       1810 1.00
includedhorm_contra:menstruationyes     0.16      0.10    -0.04     0.35       1661 1.00
includedhorm_contra:fertile            -0.89      0.20    -1.28    -0.50       1661 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

sexual_intercourse_2

Item text:

Hatten Sie seit Ihrem letzten Eintrag mit Ihrem Partner Geschlechtsverkehr?

Item translation:

7. Did you have sexual intercourse with your partner?

Choices:

choice value frequency percent
0 NA 23389 0.78
1 ja (1x) 4485 0.15
2 ja (mehrfach) 2028 0.07

Model

Model summary

 Family: cumulative(logit) 
Formula: sexual_intercourse_2 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26568) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 31568.87; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.06      0.05     0.96     1.16        693 1.01
sd(fertile)                              1.06      0.21     0.61     1.46        133 1.03
sd(menstruationpre)                      0.54      0.12     0.30     0.75        216 1.02
sd(menstruationyes)                      1.02      0.11     0.80     1.24        595 1.00
cor(Intercept,fertile)                  -0.26      0.14    -0.50     0.04        575 1.01
cor(Intercept,menstruationpre)          -0.19      0.14    -0.43     0.10        634 1.01
cor(fertile,menstruationpre)             0.77      0.15     0.42     0.97        317 1.02
cor(Intercept,menstruationyes)           0.07      0.10    -0.12     0.28        568 1.00
cor(fertile,menstruationyes)             0.05      0.21    -0.43     0.42        138 1.01
cor(menstruationpre,menstruationyes)     0.09      0.20    -0.32     0.44        178 1.03

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            1.70      0.11     1.48     1.92       1692    1
Intercept[2]                            3.24      0.11     3.02     3.46       1743    1
includedhorm_contra                     0.46      0.10     0.27     0.65       1163    1
menstruationpre                        -0.07      0.09    -0.25     0.12       1888    1
menstruationyes                        -1.03      0.13    -1.30    -0.78       1820    1
fertile                                 0.19      0.18    -0.18     0.54       1814    1
fertile_mean                            0.48      0.48    -0.45     1.44       2082    1
includedhorm_contra:menstruationpre    -0.09      0.11    -0.30     0.11       1908    1
includedhorm_contra:menstruationyes    -0.40      0.15    -0.69    -0.12       2460    1
includedhorm_contra:fertile            -0.56      0.21    -0.98    -0.14       1783    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

sexual_intercourse_3

Item text:

Wer hat den Geschlechtsverkehr stärker initiiert?

Item translation:

8. Who initiated the sexual intercourse more strongly?

Choices:

choice value frequency percent
1 ich 2583 0.4
2 mein Partner 3929 0.6

Model

Model summary

 Family: bernoulli(logit) 
Formula: sexual_intercourse_3 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
   Data: diary (Number of observations: 5730) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 7569.73; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 853) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            0.54      0.08     0.39     0.68        742 1.01
sd(fertile)                              0.57      0.38     0.03     1.38        130 1.01
sd(menstruationpre)                      0.43      0.22     0.04     0.84        275 1.01
sd(menstruationyes)                      0.62      0.26     0.09     1.12        418 1.00
cor(Intercept,fertile)                  -0.13      0.39    -0.79     0.70       1189 1.00
cor(Intercept,menstruationpre)           0.16      0.33    -0.48     0.79        968 1.00
cor(fertile,menstruationpre)            -0.04      0.42    -0.81     0.74        473 1.00
cor(Intercept,menstruationyes)          -0.29      0.29    -0.78     0.39        622 1.01
cor(fertile,menstruationyes)             0.18      0.43    -0.71     0.87        252 1.01
cor(menstruationpre,menstruationyes)    -0.39      0.37    -0.91     0.51        544 1.00

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept                               0.27      0.13     0.02     0.51       1799    1
includedhorm_contra                     0.17      0.11    -0.05     0.39       1418    1
menstruationpre                         0.09      0.15    -0.20     0.40       1662    1
menstruationyes                         0.08      0.17    -0.25     0.42       1800    1
fertile                                -0.38      0.26    -0.92     0.13       1692    1
fertile_mean                            0.77      0.54    -0.24     1.83       3423    1
includedhorm_contra:menstruationpre    -0.19      0.18    -0.56     0.17       1737    1
includedhorm_contra:menstruationyes    -0.54      0.22    -0.97    -0.11       2120    1
includedhorm_contra:fertile             0.45      0.33    -0.20     1.11       1568    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

sexual_intercourse_5

Item text:

Hatten Sie seit Ihrem letzten Eintrag anderen sexuellen Kontakt mit Ihrem Partner (Oralverkehr, Petting etc.)?

Item translation:

10. Did you have other forms of sexual contact with your

Choices:

choice value frequency percent
0 NA 24118 0.81
1 ja (1x) 3660 0.12
2 ja (mehrfach) 2123 0.07

Model

Model summary

 Family: cumulative(logit) 
Formula: sexual_intercourse_5 ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 26567) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 29463.19; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 1043) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.17      0.06     1.06     1.28       1268 1.00
sd(fertile)                              1.54      0.18     1.18     1.90        561 1.01
sd(menstruationpre)                      0.67      0.11     0.44     0.87        534 1.01
sd(menstruationyes)                      0.86      0.10     0.68     1.05        801 1.00
cor(Intercept,fertile)                  -0.17      0.10    -0.36     0.05       1426 1.00
cor(Intercept,menstruationpre)          -0.09      0.12    -0.31     0.17       1116 1.00
cor(fertile,menstruationpre)             0.57      0.13     0.28     0.82        468 1.00
cor(Intercept,menstruationyes)          -0.13      0.10    -0.32     0.07        914 1.00
cor(fertile,menstruationyes)             0.05      0.17    -0.30     0.36        326 1.01
cor(menstruationpre,menstruationyes)     0.33      0.16    -0.01     0.62        303 1.01

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                            1.86      0.12     1.62     2.10       1974    1
Intercept[2]                            3.23      0.12     2.99     3.48       1989    1
includedhorm_contra                     0.34      0.11     0.13     0.56       1412    1
menstruationpre                        -0.19      0.11    -0.41     0.02       1967    1
menstruationyes                        -0.36      0.11    -0.59    -0.13       1930    1
fertile                                 0.09      0.21    -0.33     0.49       2061    1
fertile_mean                           -0.10      0.51    -1.07     0.91       2564    1
includedhorm_contra:menstruationpre     0.02      0.12    -0.21     0.25       2478    1
includedhorm_contra:menstruationyes    -0.07      0.13    -0.32     0.18       2451    1
includedhorm_contra:fertile            -0.46      0.24    -0.92     0.02       2236    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

sexual_intercourse_satisfaction

Item text:


Item translation:


Choices:

choice value frequency percent
1 NA 46 0.01
2 NA 78 0.01
3 NA 250 0.04
4 NA 1361 0.21
5 NA 1887 0.29
6 NA 2889 0.44

Model

Model summary

 Family: cumulative(logit) 
Formula: sexual_intercourse_satisfaction ~ included * (menstruation + fertile) + fertile_mean + (1 + fertile + menstruation | person) 
         disc = 1
   Data: diary (Number of observations: 5729) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup samples = 4000
    ICs: LOO = 12844.77; WAIC = Not computed
 
Group-Level Effects: 
~person (Number of levels: 853) 
                                     Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept)                            1.48      0.08     1.32     1.64       1776 1.00
sd(fertile)                              0.99      0.45     0.10     1.80        176 1.03
sd(menstruationpre)                      0.41      0.20     0.03     0.80        280 1.01
sd(menstruationyes)                      0.97      0.22     0.51     1.37        565 1.02
cor(Intercept,fertile)                  -0.01      0.26    -0.47     0.56       1798 1.00
cor(Intercept,menstruationpre)           0.21      0.28    -0.36     0.72       2170 1.00
cor(fertile,menstruationpre)            -0.03      0.41    -0.80     0.72        470 1.00
cor(Intercept,menstruationyes)          -0.33      0.15    -0.60    -0.01       1350 1.00
cor(fertile,menstruationyes)             0.44      0.32    -0.34     0.90        290 1.01
cor(menstruationpre,menstruationyes)    -0.45      0.35    -0.92     0.36        331 1.02

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept[1]                           -6.07      0.24    -6.56    -5.61       4000    1
Intercept[2]                           -4.89      0.20    -5.29    -4.50       4000    1
Intercept[3]                           -3.57      0.18    -3.92    -3.21       3324    1
Intercept[4]                           -1.29      0.17    -1.63    -0.96       3454    1
Intercept[5]                            0.39      0.17     0.05     0.72       3492    1
includedhorm_contra                     0.10      0.15    -0.19     0.39       2571    1
menstruationpre                        -0.04      0.14    -0.32     0.24       4000    1
menstruationyes                        -0.11      0.18    -0.45     0.24       4000    1
fertile                                 0.19      0.28    -0.37     0.75       4000    1
fertile_mean                           -0.21      0.71    -1.60     1.20       4000    1
includedhorm_contra:menstruationpre     0.11      0.18    -0.23     0.46       4000    1
includedhorm_contra:menstruationyes    -0.04      0.23    -0.48     0.40       4000    1
includedhorm_contra:fertile            -0.54      0.34    -1.21     0.13       4000    1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
is a crude measure of effective sample size, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1).

Coefficient plot

Marginal effect plots

Diagnostics

All models

Coefficient plot

coefs = bind_rows(fertile_eff_by_item)
coefs = coefs  %>% 
  mutate(contraception = ifelse(term == "fertile", "cycling", "hormonally\ncontracepting")) %>% 
  group_by(outcome) %>% 
  mutate(fertmean = na.omit(ifelse(term == "fertile", mean, NA_real_))) %>% 
  ungroup() %>% 
  arrange(desc(fertmean), outcome)


coefs  %>% 
  mutate(outcome = factor(outcome, levels = coefs$outcome %>% unique() %>% rev()))  %>% 
ggplot(., aes(x = outcome, y = mean, ymin = X2.5., ymax = X97.5., color = contraception)) + 
  geom_linerange(aes(ymin = X20., ymax = X80.), position = position_dodge(width = 0.2), size = 1.5) + 
  geom_linerange(aes(ymin = X10., ymax = X90.), position = position_dodge(width = 0.2), size = 1) + 
  geom_linerange(position = position_dodge(width = 0.2), size = 0.5) +
  geom_linerange(aes(ymin = X0.5., ymax = X99.5.), position = position_dodge(width = 0.2), size = 0.3) + 
  geom_point(position = position_dodge(width = 0.2), size = 3) + 
  scale_color_manual("", values = c("hormonally\ncontracepting" = "black","cycling" = "red"), guide = F) + 
  ylab("regression slope") +
  geom_hline(yintercept = 0, linetype = 'dashed') + 
  coord_flip()

Table

library(DT)
coefs %>% 
  mutate(
        mean = form(mean),
        `95% CI` = paste0("[", form(X2.5.,2) , ";", form(X97.5.,2) , "]"),
         label = paste0(label, " [", outcome, "]")) %>% 
  select(label, contraception, mean, `95% CI`) %>% 
  datatable(rownames = FALSE, filter = "top", extensions = 'Buttons', options = list(
    dom = 'Bfrtip',
    buttons = c('copy', 'csv', 'excel', 'pdf', 'print'),
    pagelength = 40
  ))